/* * Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana * University Research and Technology * Corporation. All rights reserved. * Copyright (c) 2004-2006 The University of Tennessee and The University * of Tennessee Research Foundation. All rights * reserved. * Copyright (c) 2004-2005 High Performance Computing Center Stuttgart, * University of Stuttgart. All rights reserved. * Copyright (c) 2004-2005 The Regents of the University of California. * All rights reserved. * $COPYRIGHT$ * * Additional copyrights may follow * * $HEADER$ */ #ifndef _OMPI_CIRCULAR_BUFFER_FIFO #define _OMPI_CIRCULAR_BUFFER_FIFO #ifdef HAVE_UNISTD_H #include /* for getpagesize() */ #endif #include "ompi/constants.h" #include "opal/sys/cache.h" #include "opal/sys/atomic.h" #include "ompi/mca/mpool/mpool.h" #include "opal/util/pow2.h" /** @file * * This defines a set of functions to create, and manipulate a FIFO * set up in a circular buffer. FIFO elements are assumed to be * pointers. Pointers are written to the head, and read from the * tail. For thread safety, a spin lock is provided in the * ompi_cb_fifo_ctl_t structure, but it's use must be managed by * the calling routines - this is not by these set of routines. * Queues are addressed relative to an offset from the base of * a memory pool, in this way, different processes with different * base addresses can access these queue at the same time. */ /* error code */ #define OMPI_CB_ERROR -1 #define OMPI_CB_FREE (void *)-2 #define OMPI_CB_RESERVED (void *)-3 #define OMPI_CB_NULL (void *)-4 /* * Structure used to keep track of the fifo status */ struct ompi_cb_fifo_ctl_t { /* spin-lock for access control */ opal_atomic_lock_t lock; /* current queue index */ volatile int fifo_index; /* number of entries that have been used, but not invalidated. used * for lazy resource reclamation */ int num_to_clear; }; typedef struct ompi_cb_fifo_ctl_t ompi_cb_fifo_ctl_t; /* data structure used to describe the fifo */ struct ompi_cb_fifo_t { /* head of queue - where next entry will be written (sender address)*/ ompi_cb_fifo_ctl_t *head; /* tail of queue - next element to read (receiver address) */ ompi_cb_fifo_ctl_t *tail; /* head of queue - where next entry will be written (receiver address) */ ompi_cb_fifo_ctl_t *recv_head; /* circular buffer array (sender address) */ volatile void **queue; /* circular buffer array (receiver address) */ volatile void **recv_queue; /* frequency of lazy free */ int lazy_free_frequency; /* mask - to handle wrap around */ unsigned int mask; }; typedef struct ompi_cb_fifo_t ompi_cb_fifo_t; /** * Return the fifo size * * @param fifo Pointer to data structure defining this fifo (IN) * * @returncode fifo size * */ static inline int ompi_cb_fifo_size(ompi_cb_fifo_t *fifo) { return fifo->mask + 1; } /** * Initialize a fifo * * @param size_of_fifo Length of fifo array (IN) * * @param fifo_memory_locality_index Locality index to apply to * the fifo array. Not currently * in use (IN) * * @param tail_memory_locality_index Locality index to apply to the * head control structure. Not * currently in use (IN) * * @param tail_memory_locality_index Locality index to apply to the * tail control structure. Not * currently in use (IN) * * @param fifo Pointer to data structure defining this fifo (IN) * * @param memory_allocator Pointer to the memory allocator to use * to allocate memory for this fifo. (IN) * * @returncode Error code * */ static inline int ompi_cb_fifo_init(int size_of_fifo, int lazy_free_freq, mca_mpool_base_module_t *head_mpool, mca_mpool_base_module_t *tail_mpool, ompi_cb_fifo_t *fifo, ptrdiff_t offset) { int i, size; char *buf; /* verify that size is power of 2, and greater that 0 - if not, * round up */ if(size_of_fifo <= 0) { return OMPI_ERROR; } /* set fifo size */ size = opal_round_up_to_nearest_pow2(size_of_fifo); /* set lazy free frequence */ if((lazy_free_freq <= 0) || (lazy_free_freq > size)) { return OMPI_ERROR; } fifo->lazy_free_frequency = lazy_free_freq; /* this will be used to mask off the higher order bits, * and use the & operator for the wrap-around */ fifo->mask = (size - 1); /* allocate fifo array */ buf = (char *) tail_mpool->mpool_alloc(tail_mpool, sizeof(void *) * size + CACHE_LINE_SIZE, getpagesize(), 0, NULL); if (NULL == buf) { return OMPI_ERR_OUT_OF_RESOURCE; } fifo->queue = (volatile void**)(buf + CACHE_LINE_SIZE); /* buffer address in a receiver address space */ fifo->recv_queue = (volatile void**)((char*)fifo->queue - offset); /* initialize the queue entries */ for (i = 0; i < size; i++) { fifo->queue[i] = OMPI_CB_FREE; } fifo->tail = (ompi_cb_fifo_ctl_t*)buf; /* initialize the tail structure */ opal_atomic_unlock(&(fifo->tail->lock)); fifo->tail->fifo_index=0; fifo->tail->num_to_clear=0; /* recalculate tail address in a receiver address space */ fifo->tail = (ompi_cb_fifo_ctl_t*)((char*)fifo->tail - offset); fifo->head = (ompi_cb_fifo_ctl_t*)head_mpool->mpool_alloc(head_mpool, sizeof(ompi_cb_fifo_ctl_t), getpagesize(), 0, NULL); if ( NULL == fifo->head ){ return OMPI_ERR_OUT_OF_RESOURCE; } /* head address in a receiver address space */ fifo->recv_head = (ompi_cb_fifo_ctl_t*)((char*)fifo->head - offset); /* initialize the head structure */ opal_atomic_unlock(&(fifo->head->lock)); fifo->head->fifo_index=0; fifo->head->num_to_clear=0; /* return */ return OMPI_SUCCESS; } /** * function to cleanup the fifo * * @param fifo Pointer to data structure defining this fifo (IN) * * @param memory_allocator Pointer to the memory allocator to use * to allocate memory for this fifo. (IN) * */ static inline int ompi_cb_fifo_free(ompi_cb_fifo_t *fifo, mca_mpool_base_module_t *memory_allocator) { char *ptr; /* make sure null fifo is not passed in */ if(NULL == fifo) { return OMPI_ERROR; } /* free fifo array */ if(OMPI_CB_NULL != fifo->head){ ptr=(char *)(fifo->head); memory_allocator->mpool_free(memory_allocator, ptr, NULL); fifo->queue = (volatile void**)OMPI_CB_NULL; } return OMPI_SUCCESS; } /** * Write pointer to the specified slot * * @param slot Slot index (IN) * * @param data Pointer value to write in specified slot (IN) * * @param fifo Pointer to data structure defining this fifo (IN) * * @returncode Slot index to which data is written * */ static inline int ompi_cb_fifo_write_to_slot(int slot, void* data, ompi_cb_fifo_t *fifo) { volatile void **ptr; /* make sure that this slot is already reserved */ ptr=fifo->queue; if (ptr[slot] == OMPI_CB_RESERVED ) { opal_atomic_rmb(); ptr[slot] = data; opal_atomic_wmb(); return slot; } return OMPI_CB_ERROR; } /** * Try to write pointer to the head of the queue * * @param data Pointer value to write in specified slot (IN) * * @param fifo Pointer to data structure defining this fifo (IN) * * @returncode Slot index to which data is written * */ static inline int ompi_cb_fifo_write_to_head(void *data, ompi_cb_fifo_t *fifo) { volatile void **ptr; ompi_cb_fifo_ctl_t *h_ptr; int index; h_ptr=fifo->head; ptr=fifo->queue; index = h_ptr->fifo_index; /* make sure the head is pointing at a free element */ if (ptr[index] == OMPI_CB_FREE) { opal_atomic_rmb(); ptr[index] = data; opal_atomic_wmb(); h_ptr->fifo_index = (index + 1) & fifo->mask; return index; } /* return */ return OMPI_CB_ERROR; } /** * Reserve slot in the fifo array * * @param fifo Pointer to data structure defining this fifo (IN) * * @returncode Slot index to which data is written * * @returncode OMPI_CB_ERROR failed to allocate index * */ static inline int ompi_cb_fifo_get_slot(ompi_cb_fifo_t *fifo) { return ompi_cb_fifo_write_to_head(OMPI_CB_RESERVED, fifo); } /** * Try to read pointer from the tail of the queue * * @param data Pointer to where data was be written (OUT) * * @param fifo Pointer to data structure defining this fifo (IN) * * @param flush_entries_read force the lazy free to happen (IN) * * @param queue_empty checks to see if the fifo is empty, but only if * flush_entries_read is set (OUT) * * @returncode Slot index to which data is written * */ static inline void *ompi_cb_fifo_read_from_tail( ompi_cb_fifo_t *fifo, bool flush_entries_read, bool *queue_empty) { int index, i; volatile void **q_ptr; ompi_cb_fifo_ctl_t *t_ptr; void *read_from_tail; *queue_empty=false; t_ptr=fifo->tail; q_ptr=fifo->recv_queue; index = t_ptr->fifo_index; read_from_tail = (void *)q_ptr[index]; opal_atomic_rmb(); /* check to see that the data is valid */ if ((read_from_tail == OMPI_CB_FREE) || (read_from_tail == OMPI_CB_RESERVED)) { return (void*)OMPI_CB_FREE; } /* increment counter for later lazy free */ t_ptr->num_to_clear++; t_ptr->fifo_index = (index + 1) & fifo->mask; /* check to see if time to do a lazy free of queue slots */ if ( (t_ptr->num_to_clear == fifo->lazy_free_frequency) || flush_entries_read ) { ompi_cb_fifo_ctl_t *h_ptr = fifo->recv_head; index = (index - t_ptr->num_to_clear + 1) & fifo->mask; for (i = 0; i < t_ptr->num_to_clear; i++) { q_ptr[index] = OMPI_CB_FREE; index = (index + 1) & fifo->mask; } opal_atomic_wmb(); t_ptr->num_to_clear = 0; /* check to see if queue is empty */ if( flush_entries_read && (t_ptr->fifo_index == h_ptr->fifo_index) ) { *queue_empty=true; } } return read_from_tail; } #endif /* !_OMPI_CIRCULAR_BUFFER_FIFO */