/* * Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana * University Research and Technology * Corporation. All rights reserved. * Copyright (c) 2004-2005 The University of Tennessee and The University * of Tennessee Research Foundation. All rights * reserved. * Copyright (c) 2004-2005 High Performance Computing Center Stuttgart, * University of Stuttgart. All rights reserved. * Copyright (c) 2004-2005 The Regents of the University of California. * All rights reserved. * Copyright (c) 2006 Cisco Systems, Inc. All rights reserved. * Copyright (c) 2006-2007 Los Alamos National Security, LLC. All rights * reserved. * Copyright (c) 2006 University of Houston. All rights reserved. * * $COPYRIGHT$ * * Additional copyrights may follow * * $HEADER$ */ #include "ompi_config.h" #ifdef HAVE_SYS_TIME_H #include #endif /* HAVE_SYS_TIME_H */ #include "mpi.h" #include "opal/mca/base/base.h" #include "opal/mca/paffinity/base/base.h" #include "opal/mca/maffinity/base/base.h" #include "opal/runtime/opal_progress.h" #include "opal/threads/threads.h" #include "opal/util/show_help.h" #include "opal/util/stacktrace.h" #include "opal/util/num_procs.h" #include "opal/runtime/opal.h" #include "opal/event/event.h" #include "orte/util/sys_info.h" #include "orte/util/proc_info.h" #include "orte/util/session_dir.h" #include "orte/runtime/runtime.h" #include "orte/mca/oob/oob.h" #include "orte/mca/oob/base/base.h" #include "orte/mca/ns/ns.h" #include "orte/mca/ns/base/base.h" #include "orte/mca/gpr/gpr.h" #include "orte/mca/rml/rml.h" #include "orte/mca/schema/schema.h" #include "orte/mca/smr/smr.h" #include "orte/mca/errmgr/errmgr.h" #include "ompi/constants.h" #include "ompi/mpi/f77/constants.h" #include "ompi/runtime/mpiruntime.h" #include "ompi/runtime/params.h" #include "ompi/communicator/communicator.h" #include "ompi/group/group.h" #include "ompi/info/info.h" #include "ompi/errhandler/errcode.h" #include "ompi/request/request.h" #include "ompi/op/op.h" #include "ompi/file/file.h" #include "ompi/attribute/attribute.h" #include "ompi/mca/allocator/base/base.h" #include "ompi/mca/allocator/allocator.h" #include "ompi/mca/rcache/base/base.h" #include "ompi/mca/rcache/rcache.h" #include "ompi/mca/mpool/base/base.h" #include "ompi/mca/mpool/mpool.h" #include "ompi/mca/pml/pml.h" #include "ompi/mca/pml/base/pml_base_module_exchange.h" #include "ompi/mca/pml/base/base.h" #include "ompi/mca/osc/base/base.h" #include "ompi/mca/coll/coll.h" #include "ompi/mca/coll/base/base.h" #include "ompi/mca/io/io.h" #include "ompi/mca/io/base/base.h" #include "ompi/debuggers/debuggers.h" #include "ompi/proc/proc.h" /* * Global variables and symbols for the MPI layer */ bool ompi_mpi_initialized = false; bool ompi_mpi_finalized = false; bool ompi_mpi_thread_multiple = false; int ompi_mpi_thread_requested = MPI_THREAD_SINGLE; int ompi_mpi_thread_provided = MPI_THREAD_SINGLE; opal_thread_t *ompi_mpi_main_thread = NULL; bool ompi_mpi_maffinity_setup = false; /* * These variables are here, rather than under ompi/mpi/c/foo.c * because it is not sufficient to have a .c file that only contains * variables -- you must have a function that is invoked from * elsewhere in the code to guarantee that all linkers will pull in * the .o file from the library. Hence, although these are MPI * constants, we might as well just define them here (i.e., in a file * that already has a function that is guaranteed to be linked in, * rather than make a new .c file with the constants and a * corresponding dummy function that is invoked from this function). * * Additionally, there can be/are strange linking paths such that * ompi_info needs symbols such as ompi_fortran_status_ignore, * which, if they weren't here with a collection of other global * symbols that are initialized (which seems to force this .o file to * be pulled into the resolution process, because ompi_info certainly * does not call ompi_mpi_init()), would not be able to be found by * the OSX linker. * * NOTE: See the big comment in ompi/mpi/f77/constants.h about why we * have four symbols for each of the common blocks (e.g., the Fortran * equivalent(s) of MPI_STATUS_IGNORE). Here, we can only have *one* * value (not four). So the only thing we can do is make it equal to * the fortran compiler convention that was selected at configure * time. Note that this is also true for the value of .TRUE. from the * Fortran compiler, so even though Open MPI supports all four Fortran * symbol conventions, it can only support one convention for the two * C constants (MPI_FORTRAN_STATUS[ES]_IGNORE) and only support one * compiler for the value of .TRUE. Ugh!! * * Note that the casts here are ok -- we're *only* comparing pointer * values (i.e., they'll never be de-referenced). The global symbols * are actually of type (ompi_fortran_common_t) (for alignment * issues), but MPI says that MPI_F_STATUS[ES]_IGNORE must be of type * (MPI_Fint*). Hence, we have to cast to make compilers not * complain. */ #if OMPI_WANT_F77_BINDINGS # if OMPI_F77_CAPS MPI_Fint *MPI_F_STATUS_IGNORE = (MPI_Fint*) &MPI_FORTRAN_STATUS_IGNORE; MPI_Fint *MPI_F_STATUSES_IGNORE = (MPI_Fint*) &MPI_FORTRAN_STATUSES_IGNORE; # elif OMPI_F77_PLAIN MPI_Fint *MPI_F_STATUS_IGNORE = (MPI_Fint*) &mpi_fortran_status_ignore; MPI_Fint *MPI_F_STATUSES_IGNORE = (MPI_Fint*) &mpi_fortran_statuses_ignore; # elif OMPI_F77_SINGLE_UNDERSCORE MPI_Fint *MPI_F_STATUS_IGNORE = (MPI_Fint*) &mpi_fortran_status_ignore_; MPI_Fint *MPI_F_STATUSES_IGNORE = (MPI_Fint*) &mpi_fortran_statuses_ignore_; # elif OMPI_F77_DOUBLE_UNDERSCORE MPI_Fint *MPI_F_STATUS_IGNORE = (MPI_Fint*) &mpi_fortran_status_ignore__; MPI_Fint *MPI_F_STATUSES_IGNORE = (MPI_Fint*) &mpi_fortran_statuses_ignore__; # else # error Unrecognized Fortran 77 name mangling scheme # endif #else MPI_Fint *MPI_F_STATUS_IGNORE = NULL; MPI_Fint *MPI_F_STATUSES_IGNORE = NULL; #endif /* OMPI_WANT_F77_BINDINGS */ /* Constants for the Fortran layer. These values are referred to via common blocks in the Fortran equivalents. See ompi/mpi/f77/constants.h for a more detailed explanation. The values are *NOT* initialized. We do not use the values of these constants; only their addresses (because they're always passed by reference by Fortran). Initializing upon instantiation these can reveal size and/or alignment differences between Fortran and C (!) which can cause warnings or errors upon linking (e.g., making static libraries with the intel 9.0 compilers on 64 bit platforms shows alignment differences between libmpi.a and the user's application, resulting in a linker warning). FWIW, if you initialize these variables in functions (i.e., not at the instantiation in the global scope), the linker somehow "figures it all out" (w.r.t. different alignments between fortan common blocks and the corresponding C variables) and no linker warnings occur. Note that the rationale for the types of each of these variables is discussed in ompi/include/mpif-common.h. Do not change the types without also modifying ompi/mpi/f77/constants.h and ompi/include/mpif-common.h. */ #define INST(type, upper_case, lower_case, single_u, double_u) \ type lower_case; \ type upper_case; \ type single_u; \ type double_u INST(int, MPI_FORTRAN_BOTTOM, mpi_fortran_bottom, mpi_fortran_bottom_, mpi_fortran_bottom__); INST(int, MPI_FORTRAN_IN_PLACE, mpi_fortran_in_place, mpi_fortran_in_place_, mpi_fortran_in_place__); INST(char *, MPI_FORTRAN_ARGV_NULL, mpi_fortran_argv_null, mpi_fortran_argv_null_, mpi_fortran_argv_null__); INST(double, MPI_FORTRAN_ARGVS_NULL, mpi_fortran_argvs_null, mpi_fortran_argvs_null_, mpi_fortran_argvs_null__); INST(int *, MPI_FORTRAN_ERRCODES_IGNORE, mpi_fortran_errcodes_ignore, mpi_fortran_errcodes_ignore_, mpi_fortran_errcodes_ignore__); INST(int *, MPI_FORTRAN_STATUS_IGNORE, mpi_fortran_status_ignore, mpi_fortran_status_ignore_, mpi_fortran_status_ignore__); INST (double, MPI_FORTRAN_STATUSES_IGNORE, mpi_fortran_statuses_ignore, mpi_fortran_statuses_ignore_, mpi_fortran_statuses_ignore__); int ompi_mpi_init(int argc, char **argv, int requested, int *provided) { int ret; ompi_proc_t** procs; size_t nprocs; char *error = NULL; bool compound_cmd = false; bool timing = false; int param, value; struct timeval ompistart, ompistop; #if 0 /* see comment below about sched_yield */ int num_processors; #endif /* Join the run-time environment - do the things that don't hit the registry */ if (ORTE_SUCCESS != (ret = opal_init())) { error = "ompi_mpi_init: opal_init failed"; goto error; } /* check to see if we want timing information */ param = mca_base_param_reg_int_name("ompi", "timing", "Request that critical timing loops be measured", false, false, 0, &value); if (value != 0) { timing = true; gettimeofday(&ompistart, NULL); } /* Setup ORTE stage 1, note that we are not infrastructre */ if (ORTE_SUCCESS != (ret = orte_init_stage1(false))) { error = "ompi_mpi_init: orte_init_stage1 failed"; goto error; } /* If we are not the seed nor a singleton, AND we have not set the orte_debug flag, then start recording the compound command that starts us up. if we are the seed or a singleton, then don't do this - the registry is local, so we'll just drive it directly */ if (orte_process_info.seed || NULL == orte_process_info.ns_replica || orte_debug_flag) { compound_cmd = false; } else { if (ORTE_SUCCESS != (ret = orte_gpr.begin_compound_cmd())) { ORTE_ERROR_LOG(ret); error = "ompi_mpi_init: orte_gpr.begin_compound_cmd failed"; goto error; } compound_cmd = true; } /* Now do the things that hit the registry */ if (ORTE_SUCCESS != (ret = orte_init_stage2())) { ORTE_ERROR_LOG(ret); error = "ompi_mpi_init: orte_init_stage2 failed"; goto error; } /* check for timing request - get stop time and report elapsed time if so */ if (timing) { gettimeofday(&ompistop, NULL); opal_output(0, "ompi_mpi_init [%ld]: time from start to completion of orte_init %ld usec", (long)ORTE_PROC_MY_NAME->vpid, (long int)((ompistop.tv_sec - ompistart.tv_sec)*1000000 + (ompistop.tv_usec - ompistart.tv_usec))); gettimeofday(&ompistart, NULL); } /* Once we've joined the RTE, see if any MCA parameters were passed to the MPI level */ if (OMPI_SUCCESS != (ret = ompi_mpi_register_params())) { error = "mca_mpi_register_params() failed"; goto error; } /* Setup process affinity */ if (ompi_mpi_paffinity_alone) { bool set = false; param = mca_base_param_find("mpi", NULL, "paffinity_processor"); if (param >= 0) { if (OMPI_SUCCESS == mca_base_param_lookup_int(param, &value)) { if (value >= 0) { if (OPAL_SUCCESS == opal_paffinity_base_set(value)) { set = true; } } } if (!set) { char *vpid; orte_ns.get_vpid_string(&vpid, orte_process_info.my_name); opal_show_help("help-mpi-runtime", "mpi_init:startup:paffinity-unavailable", true, vpid); free(vpid); } /* If we were able to set processor affinity, try setting up memory affinity */ else { if (OPAL_SUCCESS == opal_maffinity_base_open() && OPAL_SUCCESS == opal_maffinity_base_select()) { ompi_mpi_maffinity_setup = true; } } } } /* initialize datatypes. This step should be done early as it will * create the local convertor and local arch used in the proc * init. */ if (OMPI_SUCCESS != (ret = ompi_ddt_init())) { error = "ompi_ddt_init() failed"; goto error; } /* Initialize OMPI procs */ if (OMPI_SUCCESS != (ret = ompi_proc_init())) { error = "mca_proc_init() failed"; goto error; } /* initialize ops. This has to be done *after* ddt_init, but befor mca_coll_base_open, since come collective modules (e.g. the hierarchical) need them in the query function */ if (OMPI_SUCCESS != (ret = ompi_op_init())) { error = "ompi_op_init() failed"; goto error; } /* Open up MPI-related MCA components */ if (OMPI_SUCCESS != (ret = mca_allocator_base_open())) { error = "mca_allocator_base_open() failed"; goto error; } if (OMPI_SUCCESS != (ret = mca_rcache_base_open())) { error = "mca_rcache_base_open() failed"; goto error; } if (OMPI_SUCCESS != (ret = mca_mpool_base_open())) { error = "mca_mpool_base_open() failed"; goto error; } if (OMPI_SUCCESS != (ret = mca_pml_base_open())) { error = "mca_pml_base_open() failed"; goto error; } if (OMPI_SUCCESS != (ret = mca_coll_base_open())) { error = "mca_coll_base_open() failed"; goto error; } if (OMPI_SUCCESS != (ret = ompi_osc_base_open())) { error = "ompi_osc_base_open() failed"; goto error; } /* In order to reduce the common case for MPI apps (where they don't use MPI-2 IO or MPI-1 topology functions), the io and topo frameworks are initialized lazily, at the first use of relevant functions (e.g., MPI_FILE_*, MPI_CART_*, MPI_GRAPH_*), so they are not opened here. */ /* Initialize module exchange */ if (OMPI_SUCCESS != (ret = mca_pml_base_modex_init())) { error = "mca_pml_base_modex_init() failed"; goto error; } /* Select which MPI components to use */ if (OMPI_SUCCESS != (ret = mca_mpool_base_init(OMPI_ENABLE_PROGRESS_THREADS, OMPI_ENABLE_MPI_THREADS))) { error = "mca_mpool_base_init() failed"; goto error; } if (OMPI_SUCCESS != (ret = mca_pml_base_select(OMPI_ENABLE_PROGRESS_THREADS, OMPI_ENABLE_MPI_THREADS))) { error = "mca_pml_base_select() failed"; goto error; } if (OMPI_SUCCESS != (ret = mca_coll_base_find_available(OMPI_ENABLE_PROGRESS_THREADS, OMPI_ENABLE_MPI_THREADS))) { error = "mca_coll_base_find_available() failed"; goto error; } if (OMPI_SUCCESS != (ret = ompi_osc_base_find_available(OMPI_ENABLE_PROGRESS_THREADS, OMPI_ENABLE_MPI_THREADS))) { error = "ompi_osc_base_find_available() failed"; goto error; } /* io and topo components are not selected here -- see comment above about the io and topo frameworks being loaded lazily */ /* Initialize each MPI handle subsystem */ /* initialize requests */ if (OMPI_SUCCESS != (ret = ompi_request_init())) { error = "ompi_request_init() failed"; goto error; } /* initialize info */ if (OMPI_SUCCESS != (ret = ompi_info_init())) { error = "ompi_info_init() failed"; goto error; } /* initialize error handlers */ if (OMPI_SUCCESS != (ret = ompi_errhandler_init())) { error = "ompi_errhandler_init() failed"; goto error; } /* initialize error codes */ if (OMPI_SUCCESS != (ret = ompi_mpi_errcode_init())) { error = "ompi_mpi_errcode_init() failed"; goto error; } /* initialize internal error codes */ if (OMPI_SUCCESS != (ret = ompi_errcode_intern_init())) { error = "ompi_errcode_intern_init() failed"; goto error; } /* initialize groups */ if (OMPI_SUCCESS != (ret = ompi_group_init())) { error = "ompi_group_init() failed"; goto error; } /* initialize communicators */ if (OMPI_SUCCESS != (ret = ompi_comm_init())) { error = "ompi_comm_init() failed"; goto error; } /* initialize file handles */ if (OMPI_SUCCESS != (ret = ompi_file_init())) { error = "ompi_file_init() failed"; goto error; } /* initialize windows */ if (OMPI_SUCCESS != (ret = ompi_win_init())) { error = "ompi_win_init() failed"; goto error; } /* initialize attribute meta-data structure for comm/win/dtype */ if (OMPI_SUCCESS != (ret = ompi_attr_init())) { error = "ompi_attr_init() failed"; goto error; } /* do module exchange */ if (OMPI_SUCCESS != (ret = mca_pml_base_modex_exchange())) { error = "mca_pml_base_modex_exchange() failed"; goto error; } /* Let system know we are at STG1 Barrier */ if (ORTE_SUCCESS != (ret = orte_smr.set_proc_state(orte_process_info.my_name, ORTE_PROC_STATE_AT_STG1, 0))) { ORTE_ERROR_LOG(ret); error = "set process state failed"; goto error; } /* check for timing request - get stop time and report elapsed time if so */ if (timing) { gettimeofday(&ompistop, NULL); opal_output(0, "ompi_mpi_init[%ld]: time from completion of orte_init to exec_compound_cmd %ld usec", (long)ORTE_PROC_MY_NAME->vpid, (long int)((ompistop.tv_sec - ompistart.tv_sec)*1000000 + (ompistop.tv_usec - ompistart.tv_usec))); gettimeofday(&ompistart, NULL); } /* if the compound command is operative, execute it */ if (compound_cmd) { if (OMPI_SUCCESS != (ret = orte_gpr.exec_compound_cmd())) { ORTE_ERROR_LOG(ret); error = "ompi_rte_init: orte_gpr.exec_compound_cmd failed"; goto error; } } /* check for timing request - get stop time and report elapsed time if so */ if (timing) { gettimeofday(&ompistop, NULL); opal_output(0, "ompi_mpi_init[%ld]: time to execute compound command %ld usec", (long)ORTE_PROC_MY_NAME->vpid, (long int)((ompistop.tv_sec - ompistart.tv_sec)*1000000 + (ompistop.tv_usec - ompistart.tv_usec))); gettimeofday(&ompistart, NULL); } /* FIRST BARRIER - WAIT FOR MSG FROM RMGR_PROC_STAGE_GATE_MGR TO ARRIVE. * We pass a "process_first" flag of "true" to indicate that we need to * process the STG1 message prior to sending it along the xcast chain * as this message contains all the oob contact info we need! */ if (ORTE_SUCCESS != (ret = orte_rml.xcast(ORTE_PROC_MY_NAME->jobid, true, NULL, orte_gpr.deliver_notify_msg))) { ORTE_ERROR_LOG(ret); error = "ompi_mpi_init: failed to see all procs register\n"; goto error; } /* check for timing request - get start time */ if (timing) { gettimeofday(&ompistop, NULL); opal_output(0, "ompi_mpi_init[%ld]: time to execute xcast %ld usec", (long)ORTE_PROC_MY_NAME->vpid, (long int)((ompistop.tv_sec - ompistart.tv_sec)*1000000 + (ompistop.tv_usec - ompistart.tv_usec))); gettimeofday(&ompistart, NULL); } /* start PTL's */ ret = MCA_PML_CALL(enable(true)); if( OMPI_SUCCESS != ret ) { error = "PML control failed"; goto error; } /* add all ompi_proc_t's to PML */ if (NULL == (procs = ompi_proc_world(&nprocs))) { error = "ompi_proc_world() failed"; goto error; } ret = MCA_PML_CALL(add_procs(procs, nprocs)); free(procs); if( OMPI_SUCCESS != ret ) { error = "PML add procs failed"; goto error; } MCA_PML_CALL(add_comm(&ompi_mpi_comm_world)); MCA_PML_CALL(add_comm(&ompi_mpi_comm_self)); /* Figure out the final MPI thread levels. If we were not compiled for support for MPI threads, then don't allow MPI_THREAD_MULTIPLE. */ ompi_mpi_thread_requested = requested; if (OMPI_HAVE_THREAD_SUPPORT == 0) { ompi_mpi_thread_provided = *provided = MPI_THREAD_SINGLE; ompi_mpi_main_thread = NULL; } else if (OMPI_ENABLE_MPI_THREADS == 1) { ompi_mpi_thread_provided = *provided = requested; ompi_mpi_main_thread = opal_thread_get_self(); } else { if (MPI_THREAD_MULTIPLE == requested) { ompi_mpi_thread_provided = *provided = MPI_THREAD_SERIALIZED; } else { ompi_mpi_thread_provided = *provided = requested; } ompi_mpi_main_thread = opal_thread_get_self(); } ompi_mpi_thread_multiple = (ompi_mpi_thread_provided == MPI_THREAD_MULTIPLE); if ((OMPI_ENABLE_PROGRESS_THREADS == 1) || (*provided != MPI_THREAD_SINGLE)) { opal_set_using_threads(true); } /* Init coll for the comms */ if (OMPI_SUCCESS != (ret = mca_coll_base_comm_select(MPI_COMM_WORLD, NULL))) { error = "mca_coll_base_comm_select(MPI_COMM_WORLD) failed"; goto error; } if (OMPI_SUCCESS != (ret = mca_coll_base_comm_select(MPI_COMM_SELF, NULL))) { error = "mca_coll_base_comm_select(MPI_COMM_SELF) failed"; goto error; } #if OMPI_ENABLE_PROGRESS_THREADS && 0 /* BWB - XXX - FIXME - is this actually correct? */ /* setup I/O forwarding */ if (orte_process_info.seed == false) { if (OMPI_SUCCESS != (ret = ompi_mpi_init_io())) { error = "ompi_rte_init_io failed"; goto error; } } #endif /* * Dump all MCA parameters if requested */ if (ompi_mpi_show_mca_params) { ompi_show_all_mca_params(ompi_mpi_comm_world.c_my_rank, nprocs, orte_system_info.nodename); } /* Let system know we are at STG2 Barrier */ if (ORTE_SUCCESS != (ret = orte_smr.set_proc_state(orte_process_info.my_name, ORTE_PROC_STATE_AT_STG2, 0))) { ORTE_ERROR_LOG(ret); error = "set process state failed"; goto error; } /* check for timing request - get stop time and report elapsed time if so */ if (timing) { gettimeofday(&ompistop, NULL); opal_output(0, "ompi_mpi_init[%ld]: time from stage1 to stage2 %ld usec", (long)ORTE_PROC_MY_NAME->vpid, (long int)((ompistop.tv_sec - ompistart.tv_sec)*1000000 + (ompistop.tv_usec - ompistart.tv_usec))); } /* Second barrier -- wait for message from RMGR_PROC_STAGE_GATE_MGR to arrive */ if (ORTE_SUCCESS != (ret = orte_rml.xcast(ORTE_PROC_MY_NAME->jobid, false, NULL, orte_gpr.deliver_notify_msg))) { ORTE_ERROR_LOG(ret); error = "ompi_mpi_init: failed to see all procs register\n"; goto error; } /* check for timing request - get start time */ if (timing) { gettimeofday(&ompistart, NULL); } /* wire up the oob interface, if requested. Do this here because it will go much faster before the event library is switched into non-blocking mode */ if (ompi_mpi_preconnect_oob) { if (OMPI_SUCCESS != (ret = ompi_init_do_oob_preconnect())) { error = "ompi_mpi_do_preconnect_oob() failed"; goto error; } } /* check for timing request - get stop time and report elapsed time if so, then start the clock again */ if (timing) { gettimeofday(&ompistop, NULL); opal_output(0, "ompi_mpi_init[%ld]: time from stage 2 cast to complete oob wireup %ld usec", (long)ORTE_PROC_MY_NAME->vpid, (long int)((ompistop.tv_sec - ompistart.tv_sec)*1000000 + (ompistop.tv_usec - ompistart.tv_usec))); gettimeofday(&ompistart, NULL); } #if OMPI_ENABLE_PROGRESS_THREADS == 0 /* Start setting up the event engine for MPI operations. Don't block in the event library, so that communications don't take forever between procs in the dynamic code. This will increase CPU utilization for the remainder of MPI_INIT when we are blocking on ORTE-level events, but may greatly reduce non-TCP latency. */ opal_progress_set_event_flag(OPAL_EVLOOP_NONBLOCK); #endif /* Check whether we have been spawned or not. We introduce that at the very end, since we need collectives, datatypes, ptls etc. up and running here.... */ if (OMPI_SUCCESS != (ret = ompi_comm_dyn_init())) { error = "ompi_comm_dyn_init() failed"; goto error; } /* Undo ORTE calling opal_progress_event_users_increment() during MPI lifetime, to get better latency when not using TCP. Do this *after* dyn_init, as dyn init uses lots of ORTE communication and we don't want to hinder the performance of that code. */ opal_progress_event_users_decrement(); /* see if the user specified yield_when_idle - if so, use it */ param = mca_base_param_find("mpi", NULL, "yield_when_idle"); mca_base_param_lookup_int(param, &value); if (value < 0) { /* TEMPORARY FIX - RIGHT NOW, WE DO NOT HAVE ACCESS TO * INFO ON THE NUMBER OF LOCAL PROCS. THE ORTED IS SETTING * THE MCA PARAM (OR THE PLS WILL, DEPENDING ON SYSTEM) SO * THE FOLLOWING CODE WILL **NEVER** BE EXECUTED *EXCEPT* * POSSIBLY BY SINGLETONS IN THE ABSENCE OF AN ENVIRO MCA PARAM */ #if 0 /* nope - so let's figure out what we can/should do... * first, get the number of processors - if we can't then * we can't do anything but set conservative values */ if (OPAL_SUCCESS == opal_get_num_processors(&num_processors)) { /* got the num_processors - compare that to the number of * local procs in this job to decide if we are oversubscribed */ if (ompi_proc_local_proc->num_local_procs > num_processors) { /* oversubscribed - better yield */ opal_progress_set_yield_when_idle(true); } else { /* not oversubscribed - go ahead and be a hog! */ opal_progress_set_yield_when_idle(false); } } else { /* couldn't get num_processors - be conservative */ opal_progress_set_yield_when_idle(true); } #endif /* always just default to conservative */ opal_progress_set_yield_when_idle(true); } else { /* yep, they specified it - so set idle accordingly */ opal_progress_set_yield_when_idle(value == 0 ? false : true); } param = mca_base_param_find("mpi", NULL, "event_tick_rate"); mca_base_param_lookup_int(param, &value); /* negative value means use default - just don't do anything */ if (value >= 0) { opal_progress_set_event_poll_rate(value); } /* At this point, we are fully configured and in MPI mode. Any communication calls here will work exactly like they would in the user's code. Setup the connections between procs and warm them up with simple sends, if requested */ if (ompi_mpi_preconnect_all) { if (OMPI_SUCCESS != (ret = ompi_init_do_preconnect())) { error = "ompi_mpi_do_preconnect_all() failed"; goto error; } } error: if (ret != OMPI_SUCCESS) { const char *err_msg = opal_strerror(ret); opal_show_help("help-mpi-runtime", "mpi_init:startup:internal-failure", true, "MPI_INIT", "MPI_INIT", error, err_msg, ret); return ret; } /* All done. Wasn't that simple? */ ompi_mpi_initialized = true; if (orte_debug_flag) { opal_output(0, "[%lu,%lu,%lu] ompi_mpi_init completed", ORTE_NAME_ARGS(orte_process_info.my_name)); } /* Do we need to wait for a TotalView-like debugger? */ ompi_wait_for_totalview(); /* check for timing request - get stop time and report elapsed time if so */ if (timing) { gettimeofday(&ompistop, NULL); opal_output(0, "ompi_mpi_init[%ld]: time from oob wireup to complete mpi_init %ld usec", (long)ORTE_PROC_MY_NAME->vpid, (long int)((ompistop.tv_sec - ompistart.tv_sec)*1000000 + (ompistop.tv_usec - ompistart.tv_usec))); } return MPI_SUCCESS; }