.\"Copyright 2006, Sun Microsystems, Inc. .\" Copyright (c) 1996 Thinking Machines Corporation .TH MPI_Alltoallv 3OpenMPI "September 2006" "Open MPI 1.2" " " .SH NAME \fBMPI_Alltoallv\fP \- All processes send different amount of data to, and receive different amount of data from, all processes .SH SYNTAX .ft R .SH C Syntax .nf #include int MPI_Alltoallv(void *\fIsendbuf\fP, int *\fIsendcounts\fP, int *\fIsdispls\fP, MPI_Datatype \fIsendtype\fP, void *\fIrecvbuf\fP, int\fI *recvcounts\fP, int *\fIrdispls\fP, MPI_Datatype \fIrecvtype\fP, MPI_Comm \fIcomm\fP) .SH Fortran Syntax .nf INCLUDE 'mpif.h' MPI_ALLTOALLV(\fISENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, IERROR\fP) \fISENDBUF(*), RECVBUF(*)\fP INTEGER \fISENDCOUNTS(*), SDISPLS(*), SENDTYPE\fP INTEGER \fIRECVCOUNTS(*), RDISPLS(*), RECVTYPE\fP INTEGER \fICOMM, IERROR\fP .SH C++ Syntax .nf #include void MPI::Comm::Alltoallv(const void* \fIsendbuf\fP, const int \fIsendcounts\fP[], const int \fIdispls\fP[], const MPI::Datatype& \fIsendtype\fP, void* \fIrecvbuf\fP, const int \fIrecvcounts\fP[], const int \fIrdispls\fP[], const MPI::Datatype& \fIrecvtype\fP) .SH INPUT PARAMETERS .ft R .TP 1.2i sendbuf Starting address of send buffer. .TP 1.2i sendcounts Integer array, where entry i specifies the number of elements to send to rank i. .TP 1.2i sdispls Integer array, where entry i specifies the displacement (offset from \fIsendbuf\fP, in units of \fIsendtype\fP) from which to send data to rank i. .TP 1.2i sendtype Datatype of send buffer elements. .TP 1.2i recvcounts Integer array, where entry j specifies the number of elements to receive from rank j. .TP 1.2i rdispls Integer array, where entry j specifies the displacement (offset from \fIrecvbuf\fP, in units of \fIrecvtype\fP) to which data from rank j should be written. .TP 1.2i recvtype Datatype of receive buffer elements. .TP 1.2i comm Communicator over which data is to be exchanged. .SH OUTPUT PARAMETERS .ft R .TP 1.2i recvbuf Address of receive buffer. .ft R .TP 1.2i IERROR Fortran only: Error status. .SH DESCRIPTION .ft R MPI_Alltoallv is a generalized collective operation in which all processes send data to and receive data from all other processes. It adds flexibility to MPI_Alltoall by allowing the user to specify data to send and receive vector-style (via a displacement and element count). The operation of this routine can be thought of as follows, where each process performs 2n (n being the number of processes in communicator \fIcomm\fP) independent point-to-point communications (including communication with itself). .sp .nf MPI_Comm_size(\fIcomm\fP, &n); for (i = 0, i < n; i++) MPI_Send(\fIsendbuf\fP + \fIsdispls\fP[i] * extent(\fIsendtype\fP), \fIsendcounts\fP[i], \fIsendtype\fP, i, ..., \fIcomm\fP); for (i = 0, i < n; i++) MPI_Recv(\fIrecvbuf\fP + \fIrdispls\fP[i] * extent(\fIrecvtype\fP), \fIrecvcounts\fP[i], \fIrecvtype\fP, i, ..., \fIcomm\fP); .fi .sp Process j sends the k-th block of its local \fIsendbuf\fP to process k, which places the data in the j-th block of its local \fIrecvbuf\fP. .sp When a pair of processes exchanges data, each may pass different element count and datatype arguments so long as the sender specifies the same amount of data to send (in bytes) as the receiver expects to receive. .sp Note that process i may send a different amount of data to process j than it receives from process j. Also, a process may send entirely different amounts of data to different processes in the communicator. .sp WHEN COMMUNICATOR IS AN INTER-COMMUNICATOR .sp When the communicator is an inter-communicator, the gather operation occurs in two phases. The data is gathered from all the members of the first group and received by all the members of the second group. Then the data is gathered from all the members of the second group and received by all the members of the first. The operation exhibits a symmetric, full-duplex behavior. .sp The first group defines the root process. The root process uses MPI_ROOT as the value of \fIroot\fR. All other processes in the first group use MPI_PROC_NULL as the value of \fIroot\fR. All processes in the second group use the rank of the root process in the first group as the value of \fIroot\fR. .sp When the communicator is an intra-communicator, these groups are the same, and the operation occurs in a single phase. .sp .SH NOTES .ft R The MPI_IN_PLACE option is not available for any form of all-to-all communication. .sp The specification of counts and displacements should not cause any location to be written more than once. .sp All arguments on all processes are significant. The \fIcomm\fP argument, in particular, must describe the same communicator on all processes. .sp The offsets of \fIsdispls\fP and \fIrdispls\fP are measured in units of \fIsendtype\fP and \fIrecvtype\fP, respectively. Compare this to MPI_Alltoallw, where these offsets are measured in bytes. .SH ERRORS .ft R Almost all MPI routines return an error value; C routines as the value of the function and Fortran routines in the last argument. C++ functions do not return errors. If the default error handler is set to MPI::ERRORS_THROW_EXCEPTIONS, then on error the C++ exception mechanism will be used to throw an MPI:Exception object. .sp Before the error value is returned, the current MPI error handler is called. By default, this error handler aborts the MPI job, except for I/O function errors. The error handler may be changed with MPI_Comm_set_errhandler; the predefined error handler MPI_ERRORS_RETURN may be used to cause error values to be returned. Note that MPI does not guarantee that an MPI program can continue past an error. .SH SEE ALSO .ft R .nf MPI_Alltoall MPI_Alltoallw