/* * Copyright (c) 2014 Cisco Systems, Inc. All rights reserved. * $COPYRIGHT$ * * Additional copyrights may follow * * $HEADER$ */ #include "opal_config.h" #include #include "opal_stdint.h" #include "opal/class/opal_pointer_array.h" #include "opal/constants.h" /* mainly for BTL_ERROR */ #if BTL_IN_OPAL #include "opal/mca/btl/btl.h" #include "opal/mca/btl/base/base.h" #include "opal/mca/btl/base/btl_base_error.h" #else #include "ompi/mca/btl/btl.h" #include "ompi/mca/btl/base/base.h" #include "ompi/mca/btl/base/btl_base_error.h" #endif #include "btl_usnic.h" #include "btl_usnic_graph.h" #include "btl_usnic_compat.h" #define GRAPH_DEBUG 0 #if GRAPH_DEBUG # define GRAPH_DEBUG_OUT(args) BTL_OUTPUT(args) #else # define GRAPH_DEBUG_OUT(args) do {} while(0) #endif #define MAX_COST INT64_MAX struct opal_btl_usnic_edge_t { opal_object_t super; opal_list_item_t outbound_li; opal_list_item_t inbound_li; /** source of this edge */ int source; /** v_index of target of this edge */ int target; /** cost (weight) of this edge */ int64_t cost; /** * (flow-network) capacity of this edge. Zero-capacity edges essentially do * not exist and will be ignored by most of the algorithms implemented here. */ int capacity; /** any other information associated with this edge */ void *e_data; }; struct opal_btl_usnic_vertex_t { /** index in the graph's array of vertices */ int v_index; /** any other information associated with the vertex */ void *v_data; /** linked list of edges for which this vertex is a source */ opal_list_t out_edges; /** linked list of edges for which this vertex is a target */ opal_list_t in_edges; }; struct opal_btl_usnic_graph_t { /** number of vertices currently in this graph */ int num_vertices; /** vertices in this graph (with number of set elements == num_vertices) */ opal_pointer_array_t vertices; /** index of the source vertex, or -1 if not present */ int source_idx; /** index of the sink vertex, or -1 if not present */ int sink_idx; /** user callback to clean up the v_data */ opal_btl_usnic_cleanup_fn_t v_data_cleanup_fn; /** user callback to clean up the e_data */ opal_btl_usnic_cleanup_fn_t e_data_cleanup_fn; }; #ifndef MAX # define MAX(a,b) ((a) > (b) ? (a) : (b)) #endif #ifndef MIN # define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif #define f(i,j) flow[n*i + j] #define LIST_FOREACH_CONTAINED(item, list, type, member) \ for (item = container_of( (list)->opal_list_sentinel.opal_list_next, type, member ); \ &item->member != &(list)->opal_list_sentinel; \ item = container_of( \ ((opal_list_item_t *) (&item->member))->opal_list_next, type, member )) #define LIST_FOREACH_SAFE_CONTAINED(item, next, list, type, member) \ for (item = container_of( (list)->opal_list_sentinel.opal_list_next, type, member ), \ next = container_of( \ ((opal_list_item_t *) (&item->member))->opal_list_next, type, member ); \ &item->member != &(list)->opal_list_sentinel; \ item = next, \ next = container_of( \ ((opal_list_item_t *) (&item->member))->opal_list_next, type, member )) #define NUM_VERTICES(g) (g->num_vertices) #define CHECK_VERTEX_RANGE(g,v) \ do { \ if ((v) < 0 || \ (v) >= NUM_VERTICES(g)) { \ return OPAL_ERR_BAD_PARAM; \ } \ } while (0) /* cast away any constness of &g->vertices b/c the opal_pointer_array API is * not const-correct */ #define V_ID_TO_PTR(g, v_id) \ ((opal_btl_usnic_vertex_t *) \ opal_pointer_array_get_item((opal_pointer_array_t *)&g->vertices, v_id)) #define FOREACH_OUT_EDGE(g,v_id,e_ptr) \ LIST_FOREACH_CONTAINED(e_ptr, \ &(V_ID_TO_PTR(g, v_id)->out_edges), \ opal_btl_usnic_edge_t, \ outbound_li) #define FOREACH_IN_EDGE(g,v_id,e_ptr) \ LIST_FOREACH_CONTAINED(e_ptr, \ &(V_ID_TO_PTR(g, v_id)->in_edges), \ opal_btl_usnic_edge_t, \ inbound_li) /* Iterate over (u,v) edge pairs along the given path, where path is defined * by the predecessor array "pred". Stops when a -1 predecessor is * encountered. Note: because it is a *predecessor* array, the traversal * starts at the sink and progresses towards the source. */ #define FOREACH_UV_ON_PATH(pred, source, sink, u, v) \ for (u = pred[sink], v = sink; u != -1; v = u, u = pred[u]) /* ensure that (a+b<=max) */ static inline void check_add64_overflow(int64_t a, int64_t b) { assert(!((b > 0) && (a > (INT64_MAX - b))) && !((b < 0) && (a < (INT64_MIN - b)))); } static void edge_constructor(opal_btl_usnic_edge_t *e) { OBJ_CONSTRUCT(&e->outbound_li, opal_list_item_t); OBJ_CONSTRUCT(&e->inbound_li, opal_list_item_t); } static void edge_destructor(opal_btl_usnic_edge_t *e) { OBJ_DESTRUCT(&e->outbound_li); OBJ_DESTRUCT(&e->inbound_li); } OBJ_CLASS_DECLARATION(opal_btl_usnic_edge_t); OBJ_CLASS_INSTANCE(opal_btl_usnic_edge_t, opal_object_t, edge_constructor, edge_destructor); static void dump_vec(const char *name, int *vec, int n) __opal_attribute_unused__; static void dump_vec(const char *name, int *vec, int n) { int i; fprintf(stderr, "%s={", name); for (i = 0; i < n; ++i) { fprintf(stderr, "[%d]=%2d, ", i, vec[i]); } fprintf(stderr, "}\n"); } static void dump_vec64(const char *name, int64_t *vec, int n) __opal_attribute_unused__; static void dump_vec64(const char *name, int64_t *vec, int n) { int i; fprintf(stderr, "%s={", name); for (i = 0; i < n; ++i) { fprintf(stderr, "[%d]=%2" PRIi64 ", ", i, vec[i]); } fprintf(stderr, "}\n"); } static void dump_flow(int *flow, int n) __opal_attribute_unused__; static void dump_flow(int *flow, int n) { int u, v; fprintf(stderr, "flow={\n"); for (u = 0; u < n; ++u) { fprintf(stderr, "u=%d| ", u); for (v = 0; v < n; ++v) { fprintf(stderr, "%2d,", f(u,v)); } fprintf(stderr, "\n"); } fprintf(stderr, "}\n"); } static int get_capacity(opal_btl_usnic_graph_t *g, int source, int target) { opal_btl_usnic_edge_t *e; CHECK_VERTEX_RANGE(g, source); CHECK_VERTEX_RANGE(g, target); FOREACH_OUT_EDGE(g, source, e) { assert(e->source == source); if (e->target == target) { return e->capacity; } } return 0; } static int set_capacity(opal_btl_usnic_graph_t *g, int source, int target, int cap) { opal_btl_usnic_edge_t *e; CHECK_VERTEX_RANGE(g, source); CHECK_VERTEX_RANGE(g, target); FOREACH_OUT_EDGE(g, source, e) { assert(e->source == source); if (e->target == target) { e->capacity = cap; return OPAL_SUCCESS; } } return OPAL_ERR_NOT_FOUND; } static void free_vertex(opal_btl_usnic_graph_t *g, opal_btl_usnic_vertex_t *v) { if (NULL != v) { if (NULL != g->v_data_cleanup_fn && NULL != v->v_data) { g->v_data_cleanup_fn(v->v_data); } free(v); } } int opal_btl_usnic_gr_create(opal_btl_usnic_cleanup_fn_t v_data_cleanup_fn, opal_btl_usnic_cleanup_fn_t e_data_cleanup_fn, opal_btl_usnic_graph_t **g_out) { int err; opal_btl_usnic_graph_t *g = NULL; if (NULL == g_out) { return OPAL_ERR_BAD_PARAM; } *g_out = NULL; g = calloc(1, sizeof(*g)); if (NULL == g) { OPAL_ERROR_LOG(OPAL_ERR_OUT_OF_RESOURCE); err = OPAL_ERR_OUT_OF_RESOURCE; goto out_free_g; } g->source_idx = -1; g->sink_idx = -1; g->v_data_cleanup_fn = v_data_cleanup_fn; g->e_data_cleanup_fn = e_data_cleanup_fn; /* now that we essentially have an empty graph, add vertices to it */ OBJ_CONSTRUCT(&g->vertices, opal_pointer_array_t); err = opal_pointer_array_init(&g->vertices, 0, INT_MAX, 32); if (OPAL_SUCCESS != err) { goto out_free_g; } *g_out = g; return OPAL_SUCCESS; out_free_g: free(g); return err; } int opal_btl_usnic_gr_free(opal_btl_usnic_graph_t *g) { int i; opal_btl_usnic_edge_t *e, *next; opal_btl_usnic_vertex_t *v; /* remove all edges from all out_edges lists */ for (i = 0; i < NUM_VERTICES(g); ++i) { v = V_ID_TO_PTR(g, i); LIST_FOREACH_SAFE_CONTAINED(e, next, &v->out_edges, opal_btl_usnic_edge_t, outbound_li) { opal_list_remove_item(&v->out_edges, &e->outbound_li); OBJ_RELEASE(e); } } /* now remove from all in_edges lists and free the edge */ for (i = 0; i < NUM_VERTICES(g); ++i) { v = V_ID_TO_PTR(g, i); LIST_FOREACH_SAFE_CONTAINED(e, next, &v->in_edges, opal_btl_usnic_edge_t, inbound_li) { opal_list_remove_item(&v->in_edges, &e->inbound_li); if (NULL != g->e_data_cleanup_fn && NULL != e->e_data) { g->e_data_cleanup_fn(e->e_data); } OBJ_RELEASE(e); } free_vertex(g, V_ID_TO_PTR(g, i)); opal_pointer_array_set_item(&g->vertices, i, NULL); } g->num_vertices = 0; OBJ_DESTRUCT(&g->vertices); free(g); return OPAL_SUCCESS; } int opal_btl_usnic_gr_clone(const opal_btl_usnic_graph_t *g, bool copy_user_data, opal_btl_usnic_graph_t **g_clone_out) { int err; int i; int index; opal_btl_usnic_graph_t *gx; opal_btl_usnic_edge_t *e; if (NULL == g_clone_out) { return OPAL_ERR_BAD_PARAM; } *g_clone_out = NULL; if (copy_user_data) { BTL_ERROR(("user data copy requested but not yet supported")); abort(); return OPAL_ERR_FATAL; } gx = NULL; err = opal_btl_usnic_gr_create(NULL, NULL, &gx); if (OPAL_SUCCESS != err) { return err; } assert(NULL != gx); /* reconstruct all vertices */ for (i = 0; i < NUM_VERTICES(g); ++i) { err = opal_btl_usnic_gr_add_vertex(gx, NULL, &index); if (OPAL_SUCCESS != err) { goto out_free_gx; } assert(index == i); } /* now reconstruct all the edges (iterate by source vertex only to avoid * double-adding) */ for (i = 0; i < NUM_VERTICES(g); ++i) { FOREACH_OUT_EDGE(g, i, e) { assert(i == e->source); err = opal_btl_usnic_gr_add_edge(gx, e->source, e->target, e->cost, e->capacity, NULL); if (OPAL_SUCCESS != err) { goto out_free_gx; } } } *g_clone_out = gx; return OPAL_SUCCESS; out_free_gx: /* we don't reach in and manipulate gx's state directly, so it should be * safe to use the standard free function */ opal_btl_usnic_gr_free(gx); return err; } int opal_btl_usnic_gr_indegree(const opal_btl_usnic_graph_t *g, int vertex) { opal_btl_usnic_vertex_t *v; v = V_ID_TO_PTR(g, vertex); return opal_list_get_size(&v->in_edges); } int opal_btl_usnic_gr_outdegree(const opal_btl_usnic_graph_t *g, int vertex) { opal_btl_usnic_vertex_t *v; v = V_ID_TO_PTR(g, vertex); return opal_list_get_size(&v->out_edges); } int opal_btl_usnic_gr_add_edge(opal_btl_usnic_graph_t *g, int from, int to, int64_t cost, int capacity, void *e_data) { opal_btl_usnic_edge_t *e; opal_btl_usnic_vertex_t *v_from, *v_to; if (from < 0 || from >= NUM_VERTICES(g)) { return OPAL_ERR_BAD_PARAM; } if (to < 0 || to >= NUM_VERTICES(g)) { return OPAL_ERR_BAD_PARAM; } if (cost == MAX_COST) { return OPAL_ERR_BAD_PARAM; } if (capacity < 0) { /* negative cost is fine, but negative capacity is not currently * handled appropriately */ return OPAL_ERR_BAD_PARAM; } FOREACH_OUT_EDGE(g, from, e) { assert(e->source == from); if (e->target == to) { return OPAL_EXISTS; } } /* this reference is owned by the out_edges list */ e = OBJ_NEW(opal_btl_usnic_edge_t); if (NULL == e) { OPAL_ERROR_LOG(OPAL_ERR_OUT_OF_RESOURCE); return OPAL_ERR_OUT_OF_RESOURCE; } e->source = from; e->target = to; e->cost = cost; e->capacity = capacity; e->e_data = e_data; v_from = V_ID_TO_PTR(g, from); opal_list_append(&v_from->out_edges, &e->outbound_li); OBJ_RETAIN(e); /* ref owned by in_edges list */ v_to = V_ID_TO_PTR(g, to); opal_list_append(&v_to->in_edges, &e->inbound_li); return OPAL_SUCCESS; } int opal_btl_usnic_gr_add_vertex(opal_btl_usnic_graph_t *g, void *v_data, int *index_out) { opal_btl_usnic_vertex_t *v; v = calloc(1, sizeof(*v)); if (NULL == v) { OPAL_ERROR_LOG(OPAL_ERR_OUT_OF_RESOURCE); return OPAL_ERR_OUT_OF_RESOURCE; } /* add to the ptr array early to simplify cleanup in the incredibly rare * chance that adding fails */ v->v_index = opal_pointer_array_add(&g->vertices, v); if (-1 == v->v_index) { free(v); OPAL_ERROR_LOG(OPAL_ERR_OUT_OF_RESOURCE); return OPAL_ERR_OUT_OF_RESOURCE; } assert(v->v_index == g->num_vertices); ++g->num_vertices; v->v_data = v_data; OBJ_CONSTRUCT(&v->out_edges, opal_list_t); OBJ_CONSTRUCT(&v->in_edges, opal_list_t); if (NULL != index_out) { *index_out = v->v_index; } return OPAL_SUCCESS; } int opal_btl_usnic_gr_order(const opal_btl_usnic_graph_t *g) { return NUM_VERTICES(g); } /** * shrink a flow matrix for old_n vertices to one works for new_n * * Takes a matrix stored in a one-dimensional array of size (old_n*old_n) and * "truncates" it into a dense array of size (new_n*new_n) that only contain * the flow values for the first new_n vertices. E.g., it turns this array * (old_n=5, new_n=3): * * 1 2 3 4 5 * 6 7 8 9 10 * 11 12 13 14 15 * 16 17 18 19 20 * 21 22 23 24 25 * * into this array; * * 1 2 3 * 6 7 8 * 11 12 13 */ static void shrink_flow_matrix(int *flow, int old_n, int new_n) { int u, v; assert(old_n > new_n); for (u = 0; u < new_n; ++u) { for (v = 0; v < new_n; ++v) { flow[new_n*u + v] = flow[old_n*u + v]; } } } /** * Compute the so-called "bottleneck" capacity value for a path "pred" through * graph "gx". */ static int bottleneck_path( opal_btl_usnic_graph_t *gx, int n, int *pred) { int u, v; int min; min = INT_MAX; FOREACH_UV_ON_PATH(pred, gx->source_idx, gx->sink_idx, u, v) { int cap_f_uv = get_capacity(gx, u, v); min = MIN(min, cap_f_uv); } return min; } /** * This routine implements the Bellman-Ford shortest paths algorithm, slightly * specialized for our forumlation of flow networks: * http://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm * * Specifically, it attempts to find the shortest path from "source" to * "target". It returns true if such a path was found, false otherwise. Any * found path is returned in "pred" as a predecessor chain (i.e., pred[sink] * is the start of the path and pred[pred[sink]] is its predecessor, etc.). * * The contents of "pred" are only valid if this routine returns true. */ static bool bellman_ford(opal_btl_usnic_graph_t *gx, int source, int target, int *pred) { int64_t *dist; int i; int n; int u, v; bool found_target = false; if (NULL == gx) { OPAL_ERROR_LOG(OPAL_ERR_BAD_PARAM); return false; } if (NULL == pred) { OPAL_ERROR_LOG(OPAL_ERR_BAD_PARAM); return false; } if (source < 0 || source >= NUM_VERTICES(gx)) { return OPAL_ERR_BAD_PARAM; } if (target < 0 || target >= NUM_VERTICES(gx)) { return OPAL_ERR_BAD_PARAM; } /* initialize */ n = opal_btl_usnic_gr_order(gx); dist = malloc(n * sizeof(*dist)); if (NULL == dist) { OPAL_ERROR_LOG(OPAL_ERR_OUT_OF_RESOURCE); goto out; } for (i = 0; i < n; ++i) { dist[i] = MAX_COST; pred[i] = -1; } dist[source] = 0; /* relax repeatedly */ for (i = 1; i < NUM_VERTICES(gx); ++i) { bool relaxed = false; #if GRAPH_DEBUG dump_vec("pred", pred, NUM_VERTICES(gx)); dump_vec64("dist", dist, NUM_VERTICES(gx)); #endif for (u = 0; u < NUM_VERTICES(gx); ++u) { opal_btl_usnic_edge_t *e_ptr; FOREACH_OUT_EDGE(gx, u, e_ptr) { v = e_ptr->target; /* make sure to only construct paths from edges that actually have * non-zero capacity */ if (e_ptr->capacity > 0 && dist[u] != MAX_COST) { /* avoid signed overflow for "infinity" */ check_add64_overflow(dist[u], e_ptr->cost); if ((dist[u] + e_ptr->cost) < dist[v]) { dist[v] = dist[u] + e_ptr->cost; pred[v] = u; relaxed = true; } } } } /* optimization: stop if an outer iteration did not succeed in * changing any dist/pred values (already at optimum) */ if (!relaxed) { GRAPH_DEBUG_OUT(("relaxed==false, breaking out")); break; } } /* check for negative-cost cycles */ for (u = 0; u < NUM_VERTICES(gx); ++u) { opal_btl_usnic_edge_t * e_ptr; FOREACH_OUT_EDGE(gx, u, e_ptr) { v = e_ptr->target; if (e_ptr->capacity > 0 && dist[u] != MAX_COST && /* avoid signed overflow */ (dist[u] + e_ptr->cost) < dist[v]) { BTL_ERROR(("negative-weight cycle detected")); abort(); goto out; } } } if (dist[target] != MAX_COST) { found_target = true; } out: #if GRAPH_DEBUG dump_vec("pred", pred, NUM_VERTICES(gx)); #endif assert(pred[source] == -1); free(dist); GRAPH_DEBUG_OUT(("bellman_ford: found_target=%s", found_target ? "true" : "false")); return found_target; } /** * Transform the given connected, bipartite, acyclic digraph into a flow * network (i.e., add a source and a sink, with the source connected to vertex * set V1 and the sink connected to vertex set V2). This also creates * residual edges suitable for augmenting-path algorithms. All "source" nodes * in the original graph are considered to have an output of 1 and "sink" * nodes can take an input of 1. The result is that "forward" edges are all * created with capacity=1, "backward" (residual) edges are created with * capacity=0. * * After this routine, all capacities are "residual capacities" ($c_f$ in the * literature). * * Initial flow throughout the network is assumed to be 0 at all edges. * * The graph will be left in an undefined state if an error occurs (though * freeing it should still be safe). */ static int bipartite_to_flow(opal_btl_usnic_graph_t *g) { int err; int order; int u, v; int num_left, num_right; /* grab size before adding extra vertices */ order = opal_btl_usnic_gr_order(g); err = opal_btl_usnic_gr_add_vertex(g, NULL, &g->source_idx); if (OPAL_SUCCESS != err) { return err; } err = opal_btl_usnic_gr_add_vertex(g, NULL, &g->sink_idx); if (OPAL_SUCCESS != err) { return err; } /* The networks we are interested in are bipartite and have edges only * from one partition to the other partition (none vice versa). We * visualize this conventionally with all of the source vertices on the * left-hand side of an imaginary rendering of the graph and the target * vertices on the right-hand side of the rendering. The direction * "forward" is considered to be moving from left to right. */ num_left = 0; num_right = 0; for (u = 0; u < order; ++u) { int inbound = opal_btl_usnic_gr_indegree(g, u); int outbound = opal_btl_usnic_gr_outdegree(g, u); if (inbound > 0 && outbound > 0) { BTL_ERROR(("graph is not (unidirectionally) bipartite")); abort(); } else if (inbound > 0) { /* "right" side of the graph, create edges to the sink */ ++num_right; err = opal_btl_usnic_gr_add_edge(g, u, g->sink_idx, 0, /* no cost */ /*capacity=*/1, /*e_data=*/NULL); if (OPAL_SUCCESS != err) { GRAPH_DEBUG_OUT(("add_edge failed")); return err; } } else if (outbound > 0) { /* "left" side of the graph, create edges to the source */ ++num_left; err = opal_btl_usnic_gr_add_edge(g, g->source_idx, u, 0, /* no cost */ /*capacity=*/1, /*e_data=*/NULL); if (OPAL_SUCCESS != err) { GRAPH_DEBUG_OUT(("add_edge failed")); return err; } } } /* it doesn't make sense to extend this graph with a source and sink * unless */ if (num_right == 0 || num_left == 0) { return OPAL_ERR_BAD_PARAM; } /* now run through and create "residual" edges as well (i.e., create edges * in the reverse direction with 0 initial flow and a residual capacity of * $c_f(u,v)=c(u,v)-f(u,v)$). Residual edges can exist where no edges * exist in the original graph. */ order = opal_btl_usnic_gr_order(g); /* need residuals for newly created source/sink edges too */ for (u = 0; u < order; ++u) { opal_btl_usnic_edge_t * e_ptr; FOREACH_OUT_EDGE(g, u, e_ptr) { v = e_ptr->target; /* (u,v) exists, add (v,u) if not already present. Cost is * negative for these edges because "giving back" flow pays us * back any cost already incurred. */ err = opal_btl_usnic_gr_add_edge(g, v, u, -e_ptr->cost, /*capacity=*/0, /*e_data=*/NULL); if (OPAL_SUCCESS != err && OPAL_EXISTS != err) { return err; } } } return OPAL_SUCCESS; } /** * Implements the "Successive Shortest Path" algorithm for computing the * minimum cost flow problem. This is a generalized version of the * Ford-Fulkerson algorithm. There are two major changes from F-F: * 1. In addition to capacities and flows, this algorithm pays attention to * costs for traversing an edge. This particular function leaves the * caller's costs alone but sets its own capacities. * 2. Shortest paths are computed using the cost metric. * * The algorithm's sketch looks like: * 1 Transform network G by adding source and sink, create residual edges * 2 Initial flow x is zero * 3 while ( Gx contains a path from s to t ) do * 4 Find any shortest path P from s to t * 5 Augment current flow x along P * 6 update Gx * * This function mutates the given graph (adding vertices and edges, changing * capacties, etc.), so callers may wish to clone the graph before calling * this routine. * * The result is an array of (u,v) vertex pairs, where (u,v) is an edge in the * original graph which has non-zero flow. * * Returns OMPI error codes like OPAL_SUCCESS/OPAL_ERR_OUT_OF_RESOURCE. * * This version of the algorithm has a theoretical upper bound on its running * time of O(|V|^2 * |E| * f), where f is essentially the maximum flow in the * graph. In our case, f=min(|V1|,|V2|), where V1 and V2 are the two * constituent sets of the bipartite graph. * * This algorithm's performance could probably be improved by modifying it to * use vertex potentials and Dijkstra's Algorithm instead of Bellman-Ford. * Normally vertex potentials are needed in order to use Dijkstra's safely, * but our graphs are constrained enough that this may not be necessary. * Switching to Dijkstra's implemented with a heap should yield a reduced * upper bound of O(|V| * |E| * f * log(|V|)). Let's consider this a future * enhancement for the time being, since it's not obvious at this point that * the faster running time will be worth the additional implementation * complexity. */ static int min_cost_flow_ssp(opal_btl_usnic_graph_t *gx, int **flow_out) { int err = OPAL_SUCCESS; int n; int *pred = NULL; int *flow = NULL; int u, v; int c; GRAPH_DEBUG_OUT(("begin min_cost_flow_ssp()")); if (NULL == flow_out) { return OPAL_ERR_BAD_PARAM; } *flow_out = NULL; n = opal_btl_usnic_gr_order(gx); pred = malloc(n*sizeof(*pred)); if (NULL == pred) { OPAL_ERROR_LOG(OPAL_ERR_OUT_OF_RESOURCE); err = OPAL_ERR_OUT_OF_RESOURCE; goto out_error; } /* "flow" is a 2d matrix of current flow values, all initialized to zero */ flow = calloc(n*n, sizeof(*flow)); if (NULL == flow) { OPAL_ERROR_LOG(OPAL_ERR_OUT_OF_RESOURCE); err = OPAL_ERR_OUT_OF_RESOURCE; goto out_error; } /* loop as long as paths exist from source to sink */ while (bellman_ford(gx, gx->source_idx, gx->sink_idx, pred)) { int cap_f_path; /* find any shortest path P from s to t (already present in pred) */ GRAPH_DEBUG_OUT(("start outer iteration of SSP algorithm")); #if GRAPH_DEBUG dump_vec("pred", pred, NUM_VERTICES(gx)); dump_flow(flow, n); #endif cap_f_path = bottleneck_path(gx, n, pred); /* augment current flow along P */ FOREACH_UV_ON_PATH(pred, gx->source_idx, gx->sink_idx, u, v) { assert(u == pred[v]); f(u,v) = f(u,v) + cap_f_path; /* "forward" edge */ f(v,u) = f(v,u) - cap_f_path; /* residual network edge */ assert(f(u,v) == -f(v,u)); /* skew symmetry invariant */ /* update Gx as we go along: decrease capacity by this new * augmenting flow */ c = get_capacity(gx, u, v) - cap_f_path; assert(c >= 0); err = set_capacity(gx, u, v, c); if (OPAL_SUCCESS != err) { BTL_ERROR(("unable to set capacity, missing edge?")); abort(); } c = get_capacity(gx, v, u) + cap_f_path; assert(c >= 0); err = set_capacity(gx, v, u, c); if (OPAL_SUCCESS != err) { BTL_ERROR(("unable to set capacity, missing edge?")); abort(); } } } out: *flow_out = flow; free(pred); return err; out_error: free(*flow_out); GRAPH_DEBUG_OUT(("returning error %d", err)); goto out; } int opal_btl_usnic_solve_bipartite_assignment(const opal_btl_usnic_graph_t *g, int *num_match_edges_out, int **match_edges_out) { int err; int i; int u, v; int n; int *flow = NULL; opal_btl_usnic_graph_t *gx = NULL; if (NULL == match_edges_out || NULL == num_match_edges_out) { return OPAL_ERR_BAD_PARAM; } *num_match_edges_out = 0; *match_edges_out = NULL; /* don't perturb the caller's data structure */ err = opal_btl_usnic_gr_clone(g, false, &gx); if (OPAL_SUCCESS != err) { GRAPH_DEBUG_OUT(("opal_btl_usnic_gr_clone failed")); goto out; } /* Transform gx into a residual flow network with capacities, a source, a * sink, and residual edges. We track the actual flow separately in the * "flow" matrix. Initial capacity for every forward edge is 1. Initial * capacity for every backward (residual) edge is 0. * * For the remainder of this routine (and the ssp routine) the capacities * refer to residual capacities ($c_f$) not capacities in the original * graph. For convenience we adjust all residual capacities as we go * along rather than recomputing them from the flow and capacities in the * original graph. This allows many other graph operations to have no * direct knowledge of the flow matrix. */ err = bipartite_to_flow(gx); if (OPAL_SUCCESS != err) { GRAPH_DEBUG_OUT(("bipartite_to_flow failed")); OPAL_ERROR_LOG(err); return err; } /* Use the SSP algorithm to compute the min-cost flow over this network. * Edges with non-zero flow in the result should be part of the matching. * * Note that the flow array returned is sized for gx, not for g. Index * accordingly later on. */ err = min_cost_flow_ssp(gx, &flow); if (OPAL_SUCCESS != err) { GRAPH_DEBUG_OUT(("min_cost_flow_ssp failed")); return err; } assert(NULL != flow); /* don't care about new edges in gx, only old edges in g */ n = opal_btl_usnic_gr_order(g); #if GRAPH_DEBUG dump_flow(flow, NUM_VERTICES(gx)); #endif shrink_flow_matrix(flow, opal_btl_usnic_gr_order(gx), n); #if GRAPH_DEBUG dump_flow(flow, n); #endif for (u = 0; u < n; ++u) { for (v = 0; v < n; ++v) { if (f(u,v) > 0) { ++(*num_match_edges_out); } } } if (0 == *num_match_edges_out) { /* avoid attempting to allocate a zero-byte buffer */ goto out; } *match_edges_out = malloc(*num_match_edges_out * sizeof(*match_edges_out)); if (NULL == *match_edges_out) { *num_match_edges_out = 0; OPAL_ERROR_LOG(OPAL_ERR_OUT_OF_RESOURCE); err = OPAL_ERR_OUT_OF_RESOURCE; goto out; } i = 0; for (u = 0; u < n; ++u) { for (v = 0; v < n; ++v) { /* flow exists on this edge so include this edge in the matching */ if (f(u,v) > 0) { (*match_edges_out)[i++] = u; (*match_edges_out)[i++] = v; } } } out: free(flow); opal_btl_usnic_gr_free(gx); return err; } #include "test/btl_usnic_graph_test.h"