/* -*- Mode: C; c-basic-offset:4 ; -*- */ /* * Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana * University Research and Technology * Corporation. All rights reserved. * Copyright (c) 2004-2008 The University of Tennessee and The University * of Tennessee Research Foundation. All rights * reserved. * Copyright (c) 2004-2005 High Performance Computing Center Stuttgart, * University of Stuttgart. All rights reserved. * Copyright (c) 2004-2005 The Regents of the University of California. * All rights reserved. * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved. * Copyright (c) 2006-2008 Mellanox Technologies. All rights reserved. * Copyright (c) 2006-2007 Los Alamos National Security, LLC. All rights * reserved. * Copyright (c) 2006-2007 Voltaire All rights reserved. * Copyright (c) 2008 Sun Microsystems, Inc. All rights reserved. * $COPYRIGHT$ * * Additional copyrights may follow * * $HEADER$ */ #include "ompi_config.h" #include #include #include "orte/util/show_help.h" #include "opal/util/if.h" #include "opal/util/arch.h" #include "ompi/mca/pml/pml.h" #include "ompi/mca/btl/btl.h" #include "ompi/mca/btl/base/btl_base_error.h" #if OPAL_ENABLE_FT == 1 #include "ompi/runtime/ompi_cr.h" #endif #include "btl_openib.h" #include "btl_openib_frag.h" #include "btl_openib_proc.h" #include "btl_openib_endpoint.h" #include "btl_openib_xrc.h" #include "ompi/datatype/convertor.h" #include "ompi/datatype/datatype.h" #include "ompi/mca/mpool/base/base.h" #include "ompi/mca/mpool/mpool.h" #include "ompi/mca/mpool/rdma/mpool_rdma.h" #include "orte/util/proc_info.h" #include #include #include #include #ifdef HAVE_SYS_TYPES_H #include #endif #ifdef HAVE_SYS_TIME_H #include #endif #ifdef HAVE_SYS_RESOURCE_H #include #endif #include mca_btl_openib_module_t mca_btl_openib_module = { { &mca_btl_openib_component.super, 0, /* max size of first fragment */ 0, /* min send fragment size */ 0, /* max send fragment size */ 0, /* btl_rdma_pipeline_send_length */ 0, /* btl_rdma_pipeline_frag_size */ 0, /* btl_min_rdma_pipeline_size */ 0, /* exclusivity */ 0, /* latency */ 0, /* bandwidth */ 0, /* TODO this should be PUT btl flags */ mca_btl_openib_add_procs, mca_btl_openib_del_procs, NULL, mca_btl_openib_finalize, /* we need alloc free, pack */ mca_btl_openib_alloc, mca_btl_openib_free, mca_btl_openib_prepare_src, mca_btl_openib_prepare_dst, mca_btl_openib_send, NULL, /* send immediate */ mca_btl_openib_put, mca_btl_openib_get, mca_btl_base_dump, NULL, /* mpool */ mca_btl_openib_register_error_cb, /* error call back registration */ mca_btl_openib_ft_event } }; static int mca_btl_openib_finalize_resources(struct mca_btl_base_module_t* btl); static void show_init_error(const char *file, int line, const char *func, const char *dev) { if (ENOMEM == errno) { int ret; struct rlimit limit; char *str_limit = NULL; #if HAVE_DECL_RLIMIT_MEMLOCK ret = getrlimit(RLIMIT_MEMLOCK, &limit); #else ret = -1; #endif if (0 != ret) { asprintf(&str_limit, "Unknown"); } else if (limit.rlim_cur == RLIM_INFINITY) { asprintf(&str_limit, "unlimited"); } else { asprintf(&str_limit, "%ld", (long)limit.rlim_cur); } orte_show_help("help-mpi-btl-openib.txt", "init-fail-no-mem", true, orte_process_info.nodename, file, line, func, dev, str_limit); if (NULL != str_limit) free(str_limit); } else { orte_show_help("help-mpi-btl-openib.txt", "init-fail-create-q", true, orte_process_info.nodename, file, line, func, strerror(errno), errno, dev); } } static inline struct ibv_cq *ibv_create_cq_compat(struct ibv_context *context, int cqe, void *cq_context, struct ibv_comp_channel *channel, int comp_vector) { #if OMPI_IBV_CREATE_CQ_ARGS == 3 return ibv_create_cq(context, cqe, channel); #else return ibv_create_cq(context, cqe, cq_context, channel, comp_vector); #endif } static int adjust_cq(mca_btl_openib_device_t *device, const int cq) { uint32_t cq_size = device->cq_size[cq]; /* make sure we don't exceed the maximum CQ size and that we * don't size the queue smaller than otherwise requested */ if(cq_size < mca_btl_openib_component.ib_cq_size[cq]) cq_size = mca_btl_openib_component.ib_cq_size[cq]; if(cq_size > (uint32_t)device->ib_dev_attr.max_cqe) cq_size = device->ib_dev_attr.max_cqe; if(NULL == device->ib_cq[cq]) { device->ib_cq[cq] = ibv_create_cq_compat(device->ib_dev_context, cq_size, #if OMPI_ENABLE_PROGRESS_THREADS == 1 device, device->ib_channel, #else NULL, NULL, #endif 0); if (NULL == device->ib_cq[cq]) { show_init_error(__FILE__, __LINE__, "ibv_create_cq", ibv_get_device_name(device->ib_dev)); return OMPI_ERROR; } #if OMPI_ENABLE_PROGRESS_THREADS == 1 if(ibv_req_notify_cq(device->ib_cq[cq], 0)) { show_init_error(__FILE__, __LINE__, "ibv_req_notify_cq", ibv_get_device_name(device->ib_dev)); return OMPI_ERROR; } OPAL_THREAD_LOCK(&device->device_lock); if (!device->progress) { int rc; device->progress = true; if(OPAL_SUCCESS != (rc = opal_thread_start(&device->thread))) { BTL_ERROR(("Unable to create progress thread, retval=%d", rc)); return rc; } } OPAL_THREAD_UNLOCK(&device->device_lock); #endif } #ifdef HAVE_IBV_RESIZE_CQ else if (cq_size > mca_btl_openib_component.ib_cq_size[cq]){ int rc; rc = ibv_resize_cq(device->ib_cq[cq], cq_size); /* For ConnectX the resize CQ is not implemented and verbs returns -ENOSYS * but should return ENOSYS. So it is reason for abs */ if(rc && ENOSYS != abs(rc)) { BTL_ERROR(("cannot resize completion queue, error: %d", rc)); return OMPI_ERROR; } } #endif return OMPI_SUCCESS; } /* * create both the high and low priority completion queues * and the shared receive queue (if requested) */ static int create_srq(mca_btl_openib_module_t *openib_btl) { int qp; /* create the SRQ's */ for(qp = 0; qp < mca_btl_openib_component.num_qps; qp++) { struct ibv_srq_init_attr attr; if(!BTL_OPENIB_QP_TYPE_PP(qp)) { attr.attr.max_wr = mca_btl_openib_component.qp_infos[qp].rd_num + mca_btl_openib_component.qp_infos[qp].u.srq_qp.sd_max; attr.attr.max_sge = 1; openib_btl->qps[qp].u.srq_qp.rd_posted = 0; #if HAVE_XRC if(BTL_OPENIB_QP_TYPE_XRC(qp)) { openib_btl->qps[qp].u.srq_qp.srq = ibv_create_xrc_srq(openib_btl->device->ib_pd, openib_btl->device->xrc_domain, openib_btl->device->ib_cq[qp_cq_prio(qp)], &attr); } else #endif { openib_btl->qps[qp].u.srq_qp.srq = ibv_create_srq(openib_btl->device->ib_pd, &attr); } if (NULL == openib_btl->qps[qp].u.srq_qp.srq) { show_init_error(__FILE__, __LINE__, "ibv_create_srq", ibv_get_device_name(openib_btl->device->ib_dev)); return OMPI_ERROR; } } } return OMPI_SUCCESS; } static int mca_btl_openib_size_queues(struct mca_btl_openib_module_t* openib_btl, size_t nprocs) { uint32_t send_cqes, recv_cqes; int rc = OMPI_SUCCESS, qp; mca_btl_openib_device_t *device = openib_btl->device; /* figure out reasonable sizes for completion queues */ for(qp = 0; qp < mca_btl_openib_component.num_qps; qp++) { if(BTL_OPENIB_QP_TYPE_SRQ(qp)) { send_cqes = mca_btl_openib_component.qp_infos[qp].u.srq_qp.sd_max; recv_cqes = mca_btl_openib_component.qp_infos[qp].rd_num; } else { send_cqes = (mca_btl_openib_component.qp_infos[qp].rd_num + mca_btl_openib_component.qp_infos[qp].u.pp_qp.rd_rsv) * nprocs; recv_cqes = send_cqes; } openib_btl->device->cq_size[qp_cq_prio(qp)] += recv_cqes; openib_btl->device->cq_size[BTL_OPENIB_LP_CQ] += send_cqes; } rc = adjust_cq(device, BTL_OPENIB_HP_CQ); if (OMPI_SUCCESS != rc) { goto out; } rc = adjust_cq(device, BTL_OPENIB_LP_CQ); if (OMPI_SUCCESS != rc) { goto out; } if (0 == openib_btl->num_peers) { rc = create_srq(openib_btl); } openib_btl->num_peers += nprocs; out: return rc; } /* * add a proc to this btl module * creates an endpoint that is setup on the * first send to the endpoint */ int mca_btl_openib_add_procs( struct mca_btl_base_module_t* btl, size_t nprocs, struct ompi_proc_t **ompi_procs, struct mca_btl_base_endpoint_t** peers, ompi_bitmap_t* reachable) { mca_btl_openib_module_t* openib_btl = (mca_btl_openib_module_t*)btl; int i,j, rc; int rem_subnet_id_port_cnt; int lcl_subnet_id_port_cnt = 0; int btl_rank = 0; mca_btl_base_endpoint_t* endpoint; ompi_btl_openib_connect_base_module_t *local_cpc; ompi_btl_openib_connect_base_module_data_t *remote_cpc_data; for(j=0; j < mca_btl_openib_component.ib_num_btls; j++){ if(mca_btl_openib_component.openib_btls[j]->port_info.subnet_id == openib_btl->port_info.subnet_id) { if(openib_btl == mca_btl_openib_component.openib_btls[j]) { btl_rank = lcl_subnet_id_port_cnt; } lcl_subnet_id_port_cnt++; } } #if HAVE_XRC if(MCA_BTL_XRC_ENABLED && NULL == mca_btl_openib_component.ib_addr_table.ht_table) { if(OPAL_SUCCESS != opal_hash_table_init( &mca_btl_openib_component.ib_addr_table, nprocs)) { BTL_ERROR(("XRC internal error. Failed to allocate ib_table")); return OMPI_ERROR; } } #endif for (i = 0; i < (int) nprocs; i++) { struct ompi_proc_t* ompi_proc = ompi_procs[i]; mca_btl_openib_proc_t* ib_proc; int remote_matching_port; opal_output(-1, "add procs: adding proc %d", i); /* OOB, XOOB, RDMACM, IBCM does not support SELF comunication, so * mark the prco as unreachable by openib btl */ if (OPAL_EQUAL == orte_util_compare_name_fields (ORTE_NS_CMP_ALL, ORTE_PROC_MY_NAME, &ompi_proc->proc_name)) { continue; } #if defined(HAVE_STRUCT_IBV_DEVICE_TRANSPORT_TYPE) /* Most current iWARP adapters (June 2008) cannot handle talking to other processes on the same host (!) -- so mark them as unreachable (need to use sm). So for the moment, we'll just mark any local peer on an iWARP NIC as unreachable. See trac ticket #1352. */ if (IBV_TRANSPORT_IWARP == openib_btl->device->ib_dev->transport_type && 0 != (ompi_proc->proc_flags && OMPI_PROC_FLAG_LOCAL)) { continue; } #endif if(NULL == (ib_proc = mca_btl_openib_proc_create(ompi_proc))) { return OMPI_ERR_OUT_OF_RESOURCE; } /* check if the remote proc has any ports that: - on the same subnet as the local proc, and - on that subnet, has a CPC in common with the local proc */ remote_matching_port = -1; rem_subnet_id_port_cnt = 0; BTL_VERBOSE(("got %d port_infos ", ib_proc->proc_port_count)); for (j = 0; j < (int) ib_proc->proc_port_count; j++){ BTL_VERBOSE(("got a subnet %016" PRIx64, ib_proc->proc_ports[j].pm_port_info.subnet_id)); if (ib_proc->proc_ports[j].pm_port_info.subnet_id == openib_btl->port_info.subnet_id) { BTL_VERBOSE(("Got a matching subnet!")); if (rem_subnet_id_port_cnt == btl_rank) { remote_matching_port = j; } rem_subnet_id_port_cnt++; } } if (0 == rem_subnet_id_port_cnt) { /* no use trying to communicate with this endpoint */ BTL_VERBOSE(("No matching subnet id/CPC was found, moving on.. ")); continue; } /* If this process has multiple ports on a single subnet ID, and the report proc also has multiple ports on this same subnet ID, the default connection pattern is: LOCAL REMOTE PEER 1st port on subnet X <--> 1st port on subnet X 2nd port on subnet X <--> 2nd port on subnet X 3nd port on subnet X <--> 3nd port on subnet X ...etc. Note that the port numbers may not be contiguous, and they may not be the same on either side. Hence the "1st", "2nd", "3rd, etc. notation, above. Hence, if the local "rank" of this module's port on the subnet ID is greater than the total number of ports on the peer on this same subnet, then we have no match. So skip this connection. */ if (rem_subnet_id_port_cnt < lcl_subnet_id_port_cnt && btl_rank >= rem_subnet_id_port_cnt) { BTL_VERBOSE(("Not enough remote ports on this subnet id, moving on.. ")); continue; } /* Now that we have verified that we're on the same subnet and the remote peer has enough ports, see if that specific port on the peer has a matching CPC. */ assert(btl_rank <= ib_proc->proc_port_count); assert(remote_matching_port != -1); if (OMPI_SUCCESS != ompi_btl_openib_connect_base_find_match(openib_btl, &(ib_proc->proc_ports[remote_matching_port]), &local_cpc, &remote_cpc_data)) { continue; } OPAL_THREAD_LOCK(&ib_proc->proc_lock); /* The btl_proc datastructure is shared by all IB BTL * instances that are trying to reach this destination. * Cache the peer instance on the btl_proc. */ endpoint = OBJ_NEW(mca_btl_openib_endpoint_t); assert(((opal_object_t*)endpoint)->obj_reference_count == 1); if(NULL == endpoint) { OPAL_THREAD_UNLOCK(&ib_proc->proc_lock); return OMPI_ERR_OUT_OF_RESOURCE; } #if HAVE_XRC if (MCA_BTL_XRC_ENABLED) { int rem_port_cnt = 0; for(j = 0; j < (int) ib_proc->proc_port_count; j++) { if(ib_proc->proc_ports[j].pm_port_info.subnet_id == openib_btl->port_info.subnet_id) { if (rem_port_cnt == btl_rank) break; else rem_port_cnt ++; } } assert(rem_port_cnt == btl_rank); /* Push the subnet/lid/jobid to xrc hash */ rc = mca_btl_openib_ib_address_add_new( ib_proc->proc_ports[j].pm_port_info.lid, ib_proc->proc_ports[j].pm_port_info.subnet_id, ompi_proc->proc_name.jobid, endpoint); if (OMPI_SUCCESS != rc ) { OPAL_THREAD_UNLOCK(&ib_proc->proc_lock); return OMPI_ERROR; } } #endif mca_btl_openib_endpoint_init(openib_btl, endpoint, local_cpc, &(ib_proc->proc_ports[remote_matching_port]), remote_cpc_data); rc = mca_btl_openib_proc_insert(ib_proc, endpoint); if (OMPI_SUCCESS != rc) { OBJ_RELEASE(endpoint); OPAL_THREAD_UNLOCK(&ib_proc->proc_lock); continue; } endpoint->index = opal_pointer_array_add(openib_btl->device->endpoints, (void*)endpoint); if( 0 > endpoint->index ) { OBJ_RELEASE(endpoint); OPAL_THREAD_UNLOCK(&ib_proc->proc_lock); continue; } /* Tell the selected CPC that it won. NOTE: This call is outside of / separate from mca_btl_openib_endpoint_init() because this function likely needs the endpoint->index. */ if (NULL != local_cpc->cbm_endpoint_init) { rc = local_cpc->cbm_endpoint_init(endpoint); if (OMPI_SUCCESS != rc) { OBJ_RELEASE(endpoint); OPAL_THREAD_UNLOCK(&ib_proc->proc_lock); continue; } } ompi_bitmap_set_bit(reachable, i); OPAL_THREAD_UNLOCK(&ib_proc->proc_lock); peers[i] = endpoint; } return mca_btl_openib_size_queues(openib_btl, nprocs); } /* * delete the proc as reachable from this btl module */ int mca_btl_openib_del_procs(struct mca_btl_base_module_t* btl, size_t nprocs, struct ompi_proc_t **procs, struct mca_btl_base_endpoint_t ** peers) { int i,ep_index; mca_btl_openib_module_t* openib_btl = (mca_btl_openib_module_t*) btl; mca_btl_openib_endpoint_t* endpoint; for (i=0 ; i < (int) nprocs ; i++) { mca_btl_base_endpoint_t* del_endpoint = peers[i]; for(ep_index=0; ep_index < opal_pointer_array_get_size(openib_btl->device->endpoints); ep_index++) { endpoint = opal_pointer_array_get_item(openib_btl->device->endpoints, ep_index); if(!endpoint || endpoint->endpoint_btl != openib_btl) { continue; } if (endpoint == del_endpoint) { BTL_VERBOSE(("in del_procs %d, setting another endpoint to null", ep_index)); opal_pointer_array_set_item(openib_btl->device->endpoints, ep_index, NULL); assert(((opal_object_t*)endpoint)->obj_reference_count == 1); mca_btl_openib_proc_remove(procs[i], endpoint); OBJ_RELEASE(endpoint); } } } return OMPI_SUCCESS; } /* *Register callback function for error handling.. */ int mca_btl_openib_register_error_cb( struct mca_btl_base_module_t* btl, mca_btl_base_module_error_cb_fn_t cbfunc) { mca_btl_openib_module_t* openib_btl = (mca_btl_openib_module_t*) btl; openib_btl->error_cb = cbfunc; /* stash for later */ return OMPI_SUCCESS; } static inline mca_btl_base_descriptor_t * ib_frag_alloc(mca_btl_openib_module_t *btl, size_t size, uint8_t order, uint32_t flags) { int qp, rc; ompi_free_list_item_t* item = NULL; for(qp = 0; qp < mca_btl_openib_component.num_qps; qp++) { if(mca_btl_openib_component.qp_infos[qp].size >= size) { OMPI_FREE_LIST_GET(&btl->device->qps[qp].send_free, item, rc); if(item) break; } } if(NULL == item) return NULL; /* not all upper layer users set this */ to_base_frag(item)->segment.seg_len = size; to_base_frag(item)->base.order = order; to_base_frag(item)->base.des_flags = flags; assert(to_send_frag(item)->qp_idx <= order); return &to_base_frag(item)->base; } /* check if pending fragment has enough space for coalescing */ static mca_btl_openib_send_frag_t *check_coalescing(opal_list_t *frag_list, opal_mutex_t *lock, mca_btl_base_endpoint_t *ep, size_t size) { mca_btl_openib_send_frag_t *frag = NULL; if(opal_list_is_empty(frag_list)) return NULL; OPAL_THREAD_LOCK(lock); if(!opal_list_is_empty(frag_list)) { int qp; size_t total_length; opal_list_item_t *i = opal_list_get_first(frag_list); frag = to_send_frag(i); if(to_com_frag(frag)->endpoint != ep || MCA_BTL_OPENIB_FRAG_CONTROL == openib_frag_type(frag)) { OPAL_THREAD_UNLOCK(lock); return NULL; } total_length = size + frag->coalesced_length + to_base_frag(frag)->segment.seg_len + sizeof(mca_btl_openib_header_coalesced_t); qp = to_base_frag(frag)->base.order; if(total_length <= mca_btl_openib_component.qp_infos[qp].size) opal_list_remove_first(frag_list); else frag = NULL; } OPAL_THREAD_UNLOCK(lock); return frag; } /** * Allocate a segment. * * @param btl (IN) BTL module * @param size (IN) Request segment size. * @param size (IN) Size of segment to allocate * * When allocating a segment we pull a pre-alllocated segment * from one of two free lists, an eager list and a max list */ mca_btl_base_descriptor_t* mca_btl_openib_alloc( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* ep, uint8_t order, size_t size, uint32_t flags) { mca_btl_openib_module_t *obtl = (mca_btl_openib_module_t*)btl; int qp = frag_size_to_order(obtl, size); mca_btl_openib_send_frag_t *sfrag = NULL; mca_btl_openib_coalesced_frag_t *cfrag; assert(qp != MCA_BTL_NO_ORDER); if(mca_btl_openib_component.use_message_coalescing && (flags & MCA_BTL_DES_FLAGS_BTL_OWNERSHIP)) { int prio = !(flags & MCA_BTL_DES_FLAGS_PRIORITY); sfrag = check_coalescing(&ep->qps[qp].qp->pending_frags[prio], &ep->qps[qp].qp->lock, ep, size); if(NULL == sfrag) { if(BTL_OPENIB_QP_TYPE_PP(qp)) { sfrag = check_coalescing(&ep->qps[qp].pending_frags[prio], &ep->endpoint_lock, ep, size); } else { sfrag = check_coalescing( &obtl->qps[qp].u.srq_qp.pending_frags[prio], &obtl->ib_lock, ep, size); } } } if(NULL == sfrag) return ib_frag_alloc((mca_btl_openib_module_t*)btl, size, order, flags); /* begin coalescing message */ cfrag = alloc_coalesced_frag(); cfrag->send_frag = sfrag; /* fix up new coalescing header if this is the first coalesced frag */ if(sfrag->hdr != sfrag->chdr) { mca_btl_openib_control_header_t *ctrl_hdr; mca_btl_openib_header_coalesced_t *clsc_hdr; uint8_t org_tag; org_tag = sfrag->hdr->tag; sfrag->hdr = sfrag->chdr; ctrl_hdr = (mca_btl_openib_control_header_t*)(sfrag->hdr + 1); clsc_hdr = (mca_btl_openib_header_coalesced_t*)(ctrl_hdr + 1); sfrag->hdr->tag = MCA_BTL_TAG_BTL; ctrl_hdr->type = MCA_BTL_OPENIB_CONTROL_COALESCED; clsc_hdr->tag = org_tag; clsc_hdr->size = to_base_frag(sfrag)->segment.seg_len; clsc_hdr->alloc_size = to_base_frag(sfrag)->segment.seg_len; if(ep->nbo) BTL_OPENIB_HEADER_COALESCED_HTON(*clsc_hdr); sfrag->coalesced_length = sizeof(mca_btl_openib_control_header_t) + sizeof(mca_btl_openib_header_coalesced_t); to_com_frag(sfrag)->sg_entry.addr = (uint64_t)(uintptr_t)sfrag->hdr; } cfrag->hdr = (mca_btl_openib_header_coalesced_t*) (((unsigned char*)(sfrag->hdr + 1)) + sfrag->coalesced_length + to_base_frag(sfrag)->segment.seg_len); cfrag->hdr->alloc_size = size; /* point coalesced frag pointer into a data buffer */ to_base_frag(cfrag)->segment.seg_addr.pval = cfrag->hdr + 1; to_base_frag(cfrag)->segment.seg_len = size; /* save coalesced fragment on a main fragment; we will need it after send * completion to free it and to call upper layer callback */ opal_list_append(&sfrag->coalesced_frags, (opal_list_item_t*)cfrag); sfrag->coalesced_length += (size+sizeof(mca_btl_openib_header_coalesced_t)); to_base_frag(cfrag)->base.des_flags = flags; return &to_base_frag(cfrag)->base; } /** * Return a segment * * Return the segment to the appropriate * preallocated segment list */ int mca_btl_openib_free( struct mca_btl_base_module_t* btl, mca_btl_base_descriptor_t* des) { /* is this fragment pointing at user memory? */ if(MCA_BTL_OPENIB_FRAG_SEND_USER == openib_frag_type(des) || MCA_BTL_OPENIB_FRAG_RECV_USER == openib_frag_type(des)) { mca_btl_openib_com_frag_t* frag = to_com_frag(des); if(frag->registration != NULL) { btl->btl_mpool->mpool_deregister(btl->btl_mpool, (mca_mpool_base_registration_t*)frag->registration); frag->registration = NULL; } } /* reset those field on free so we will not have to do it on alloc */ to_base_frag(des)->base.des_flags = 0; switch(openib_frag_type(des)) { case MCA_BTL_OPENIB_FRAG_RECV: case MCA_BTL_OPENIB_FRAG_RECV_USER: to_base_frag(des)->base.des_src = NULL; to_base_frag(des)->base.des_src_cnt = 0; break; case MCA_BTL_OPENIB_FRAG_SEND: to_send_frag(des)->hdr = (mca_btl_openib_header_t*) (((unsigned char*)to_send_frag(des)->chdr) + sizeof(mca_btl_openib_header_coalesced_t) + sizeof(mca_btl_openib_control_header_t)); to_com_frag(des)->sg_entry.addr = (uint64_t)(uintptr_t)to_send_frag(des)->hdr; to_send_frag(des)->coalesced_length = 0; assert(!opal_list_get_size(&to_send_frag(des)->coalesced_frags)); /* fall throug */ case MCA_BTL_OPENIB_FRAG_SEND_USER: to_base_frag(des)->base.des_dst = NULL; to_base_frag(des)->base.des_dst_cnt = 0; break; default: break; } MCA_BTL_IB_FRAG_RETURN(des); return OMPI_SUCCESS; } /** * register user buffer or pack * data into pre-registered buffer and return a * descriptor that can be * used for send/put. * * @param btl (IN) BTL module * @param peer (IN) BTL peer addressing * * prepare source's behavior depends on the following: * Has a valid memory registration been passed to prepare_src? * if so we attempt to use the pre-registered user-buffer, if the memory registration * is too small (only a portion of the user buffer) then we must reregister the user buffer * Has the user requested the memory to be left pinned? * if so we insert the memory registration into a memory tree for later lookup, we * may also remove a previous registration if a MRU (most recently used) list of * registrations is full, this prevents resources from being exhausted. * Is the requested size larger than the btl's max send size? * if so and we aren't asked to leave the registration pinned, then we register the memory if * the users buffer is contiguous * Otherwise we choose from two free lists of pre-registered memory in which to pack the data into. * */ mca_btl_base_descriptor_t* mca_btl_openib_prepare_src( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, mca_mpool_base_registration_t* registration, struct ompi_convertor_t* convertor, uint8_t order, size_t reserve, size_t* size, uint32_t flags) { mca_btl_openib_module_t *openib_btl; mca_btl_openib_reg_t *openib_reg; mca_btl_openib_com_frag_t *frag = NULL; struct iovec iov; uint32_t iov_count = 1; size_t max_data = *size; int rc; openib_btl = (mca_btl_openib_module_t*)btl; if(ompi_convertor_need_buffers(convertor) == false && 0 == reserve) { /* GMS bloody HACK! */ if(registration != NULL || max_data > btl->btl_max_send_size) { frag = alloc_send_user_frag(); if(NULL == frag) { return NULL; } iov.iov_len = max_data; iov.iov_base = NULL; ompi_convertor_pack(convertor, &iov, &iov_count, &max_data); *size = max_data; if(NULL == registration) { rc = btl->btl_mpool->mpool_register(btl->btl_mpool, iov.iov_base, max_data, 0, ®istration); if(OMPI_SUCCESS != rc || NULL == registration) { MCA_BTL_IB_FRAG_RETURN(frag); return NULL; } /* keep track of the registration we did */ to_com_frag(frag)->registration = (mca_btl_openib_reg_t*)registration; } openib_reg = (mca_btl_openib_reg_t*)registration; frag->sg_entry.length = max_data; frag->sg_entry.lkey = openib_reg->mr->lkey; frag->sg_entry.addr = (uint64_t)(uintptr_t)iov.iov_base; to_base_frag(frag)->base.order = order; to_base_frag(frag)->base.des_flags = flags; to_base_frag(frag)->segment.seg_len = max_data; to_base_frag(frag)->segment.seg_addr.pval = iov.iov_base; to_base_frag(frag)->segment.seg_key.key32[0] = (uint32_t)frag->sg_entry.lkey; assert(MCA_BTL_NO_ORDER == order); BTL_VERBOSE(("frag->sg_entry.lkey = %lu .addr = %llu " "frag->segment.seg_key.key32[0] = %lu", frag->sg_entry.lkey, frag->sg_entry.addr, frag->sg_entry.lkey)); return &to_base_frag(frag)->base; } } assert(MCA_BTL_NO_ORDER == order); if(max_data + reserve > btl->btl_max_send_size) { max_data = btl->btl_max_send_size - reserve; } frag = (mca_btl_openib_com_frag_t*)(reserve ? mca_btl_openib_alloc(btl, endpoint, order, max_data + reserve, flags) : ib_frag_alloc(openib_btl, max_data, order, flags)); if(NULL == frag) return NULL; iov.iov_len = max_data; iov.iov_base = (unsigned char*)to_base_frag(frag)->segment.seg_addr.pval + reserve; rc = ompi_convertor_pack(convertor, &iov, &iov_count, &max_data); *size = max_data; /* not all upper layer users set this */ to_base_frag(frag)->segment.seg_len = max_data + reserve; return &to_base_frag(frag)->base; } /** * Prepare the dst buffer * * @param btl (IN) BTL module * @param peer (IN) BTL peer addressing * prepare dest's behavior depends on the following: * Has a valid memory registration been passed to prepare_src? * if so we attempt to use the pre-registered user-buffer, if the memory registration * is to small (only a portion of the user buffer) then we must reregister the user buffer * Has the user requested the memory to be left pinned? * if so we insert the memory registration into a memory tree for later lookup, we * may also remove a previous registration if a MRU (most recently used) list of * registrations is full, this prevents resources from being exhausted. */ mca_btl_base_descriptor_t* mca_btl_openib_prepare_dst( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, mca_mpool_base_registration_t* registration, struct ompi_convertor_t* convertor, uint8_t order, size_t reserve, size_t* size, uint32_t flags) { mca_btl_openib_module_t *openib_btl; mca_btl_openib_com_frag_t *frag; mca_btl_openib_reg_t *openib_reg; int rc; void *buffer; openib_btl = (mca_btl_openib_module_t*)btl; frag = alloc_recv_user_frag(); if(NULL == frag) { return NULL; } ompi_convertor_get_current_pointer(convertor, &buffer); if(NULL == registration){ /* we didn't get a memory registration passed in, so we have to * register the region ourselves */ rc = btl->btl_mpool->mpool_register(btl->btl_mpool, buffer, *size, 0, ®istration); if(OMPI_SUCCESS != rc || NULL == registration) { MCA_BTL_IB_FRAG_RETURN(frag); return NULL; } /* keep track of the registration we did */ frag->registration = (mca_btl_openib_reg_t*)registration; } openib_reg = (mca_btl_openib_reg_t*)registration; frag->sg_entry.length = *size; frag->sg_entry.lkey = openib_reg->mr->lkey; frag->sg_entry.addr = (uint64_t)(uintptr_t)buffer; to_base_frag(frag)->segment.seg_addr.pval = buffer; to_base_frag(frag)->segment.seg_len = *size; to_base_frag(frag)->segment.seg_key.key32[0] = openib_reg->mr->rkey; to_base_frag(frag)->base.order = order; to_base_frag(frag)->base.des_flags = flags; BTL_VERBOSE(("frag->sg_entry.lkey = %lu .addr = %llu " "frag->segment.seg_key.key32[0] = %lu", frag->sg_entry.lkey, frag->sg_entry.addr, openib_reg->mr->rkey)); return &to_base_frag(frag)->base; } static int mca_btl_openib_finalize_resources(struct mca_btl_base_module_t* btl) { mca_btl_openib_module_t* openib_btl; mca_btl_openib_endpoint_t* endpoint; int ep_index, i; int qp, rc = OMPI_SUCCESS; openib_btl = (mca_btl_openib_module_t*) btl; /* Sanity check */ if( mca_btl_openib_component.ib_num_btls <= 0 ) { return OMPI_SUCCESS; } /* Release all QPs */ for (ep_index=0; ep_index < opal_pointer_array_get_size(openib_btl->device->endpoints); ep_index++) { endpoint=opal_pointer_array_get_item(openib_btl->device->endpoints, ep_index); if(!endpoint) { BTL_VERBOSE(("In finalize, got another null endpoint")); continue; } if(endpoint->endpoint_btl != openib_btl) { continue; } for(i = 0; i < openib_btl->device->eager_rdma_buffers_count; i++) { if(openib_btl->device->eager_rdma_buffers[i] == endpoint) { openib_btl->device->eager_rdma_buffers[i] = NULL; OBJ_RELEASE(endpoint); } } OBJ_RELEASE(endpoint); } /* Release SRQ resources */ for(qp = 0; qp < mca_btl_openib_component.num_qps; qp++) { if(!BTL_OPENIB_QP_TYPE_PP(qp)) { MCA_BTL_OPENIB_CLEAN_PENDING_FRAGS( &openib_btl->qps[qp].u.srq_qp.pending_frags[0]); MCA_BTL_OPENIB_CLEAN_PENDING_FRAGS( &openib_btl->qps[qp].u.srq_qp.pending_frags[1]); if (ibv_destroy_srq(openib_btl->qps[qp].u.srq_qp.srq)){ BTL_VERBOSE(("Failed to close SRQ %d", qp)); rc = OMPI_ERROR; } OBJ_DESTRUCT(&openib_btl->qps[qp].u.srq_qp.pending_frags[0]); OBJ_DESTRUCT(&openib_btl->qps[qp].u.srq_qp.pending_frags[1]); } } /* Finalize the CPC modules on this openib module */ for (i = 0; i < openib_btl->num_cpcs; ++i) { if (NULL != openib_btl->cpcs[i]->cbm_finalize) { openib_btl->cpcs[i]->cbm_finalize(openib_btl, openib_btl->cpcs[i]); } free(openib_btl->cpcs[i]); } free(openib_btl->cpcs); /* Release device if there are no more users */ if(!(--openib_btl->device->btls)) { OBJ_RELEASE(openib_btl->device); } return rc; } int mca_btl_openib_finalize(struct mca_btl_base_module_t* btl) { mca_btl_openib_module_t* openib_btl; int i, rc = OMPI_SUCCESS; openib_btl = (mca_btl_openib_module_t*) btl; /* Sanity check */ if( mca_btl_openib_component.ib_num_btls <= 0 ) { return 0; } if( OMPI_SUCCESS != (rc = mca_btl_openib_finalize_resources(btl) ) ) { BTL_VERBOSE(("Failed to finalize resources")); } /* Remove the btl from component list */ if ( mca_btl_openib_component.ib_num_btls > 1 ) { for(i = 0; i < mca_btl_openib_component.ib_num_btls; i++){ if (mca_btl_openib_component.openib_btls[i] == openib_btl){ mca_btl_openib_component.openib_btls[i] = mca_btl_openib_component.openib_btls[mca_btl_openib_component.ib_num_btls-1]; break; } } } mca_btl_openib_component.ib_num_btls--; OBJ_DESTRUCT(&openib_btl->ib_lock); free(openib_btl); BTL_VERBOSE(("Success in closing BTL resources")); return rc; } /* * Initiate a send. */ int mca_btl_openib_send( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* ep, struct mca_btl_base_descriptor_t* des, mca_btl_base_tag_t tag) { mca_btl_openib_send_frag_t *frag; assert(openib_frag_type(des) == MCA_BTL_OPENIB_FRAG_SEND || openib_frag_type(des) == MCA_BTL_OPENIB_FRAG_COALESCED); if(openib_frag_type(des) == MCA_BTL_OPENIB_FRAG_COALESCED) { to_coalesced_frag(des)->hdr->tag = tag; to_coalesced_frag(des)->hdr->size = des->des_src->seg_len; if(ep->nbo) BTL_OPENIB_HEADER_COALESCED_HTON(*to_coalesced_frag(des)->hdr); frag = to_coalesced_frag(des)->send_frag; } else { frag = to_send_frag(des); to_com_frag(des)->endpoint = ep; frag->hdr->tag = tag; } return mca_btl_openib_endpoint_send(ep, frag); } /* * RDMA WRITE local buffer to remote buffer address. */ int mca_btl_openib_put( mca_btl_base_module_t* btl, mca_btl_base_endpoint_t* ep, mca_btl_base_descriptor_t* descriptor) { struct ibv_send_wr* bad_wr; mca_btl_openib_out_frag_t* frag = to_out_frag(descriptor); int qp = descriptor->order; uint64_t rem_addr = descriptor->des_dst->seg_addr.lval; uint32_t rkey = descriptor->des_dst->seg_key.key32[0]; assert(openib_frag_type(frag) == MCA_BTL_OPENIB_FRAG_SEND_USER || openib_frag_type(frag) == MCA_BTL_OPENIB_FRAG_SEND); if(ep->endpoint_state != MCA_BTL_IB_CONNECTED) { int rc; OPAL_THREAD_LOCK(&ep->endpoint_lock); rc = check_endpoint_state(ep, descriptor, &ep->pending_put_frags); OPAL_THREAD_UNLOCK(&ep->endpoint_lock); if(OMPI_ERR_RESOURCE_BUSY == rc) return OMPI_SUCCESS; if(OMPI_SUCCESS != rc) return rc; } if(MCA_BTL_NO_ORDER == qp) qp = mca_btl_openib_component.rdma_qp; /* check for a send wqe */ if (qp_get_wqe(ep, qp) < 0) { qp_put_wqe(ep, qp); OPAL_THREAD_LOCK(&ep->endpoint_lock); opal_list_append(&ep->pending_put_frags, (opal_list_item_t*)frag); OPAL_THREAD_UNLOCK(&ep->endpoint_lock); return OMPI_SUCCESS; } /* post descriptor */ #if OMPI_ENABLE_HETEROGENEOUS_SUPPORT if((ep->endpoint_proc->proc_ompi->proc_arch & OPAL_ARCH_ISBIGENDIAN) != (ompi_proc_local()->proc_arch & OPAL_ARCH_ISBIGENDIAN)) { rem_addr = opal_swap_bytes8(rem_addr); rkey = opal_swap_bytes4(rkey); } #endif frag->sr_desc.wr.rdma.remote_addr = rem_addr; frag->sr_desc.wr.rdma.rkey = rkey; to_com_frag(frag)->sg_entry.addr = (uint64_t)(uintptr_t)descriptor->des_src->seg_addr.pval; to_com_frag(frag)->sg_entry.length = descriptor->des_src->seg_len; to_com_frag(frag)->endpoint = ep; #if HAVE_XRC if (MCA_BTL_XRC_ENABLED && BTL_OPENIB_QP_TYPE_XRC(qp)) frag->sr_desc.xrc_remote_srq_num=ep->rem_info.rem_srqs[qp].rem_srq_num; #endif descriptor->order = qp; /* Setting opcode on a frag constructor isn't enough since prepare_src * may return send_frag instead of put_frag */ frag->sr_desc.opcode = IBV_WR_RDMA_WRITE; frag->sr_desc.send_flags = ib_send_flags(descriptor->des_src->seg_len, &(ep->qps[qp])); if(ibv_post_send(ep->qps[qp].qp->lcl_qp, &frag->sr_desc, &bad_wr)) return OMPI_ERROR; return OMPI_SUCCESS; } /* * RDMA READ remote buffer to local buffer address. */ int mca_btl_openib_get(mca_btl_base_module_t* btl, mca_btl_base_endpoint_t* ep, mca_btl_base_descriptor_t* descriptor) { struct ibv_send_wr* bad_wr; mca_btl_openib_get_frag_t* frag = to_get_frag(descriptor); int qp = descriptor->order; uint64_t rem_addr = descriptor->des_src->seg_addr.lval; uint32_t rkey = descriptor->des_src->seg_key.key32[0]; assert(openib_frag_type(frag) == MCA_BTL_OPENIB_FRAG_RECV_USER); if(ep->endpoint_state != MCA_BTL_IB_CONNECTED) { int rc; OPAL_THREAD_LOCK(&ep->endpoint_lock); rc = check_endpoint_state(ep, descriptor, &ep->pending_get_frags); OPAL_THREAD_UNLOCK(&ep->endpoint_lock); if(OMPI_ERR_RESOURCE_BUSY == rc) return OMPI_SUCCESS; if(OMPI_SUCCESS != rc) return rc; } if(MCA_BTL_NO_ORDER == qp) qp = mca_btl_openib_component.rdma_qp; /* check for a send wqe */ if (qp_get_wqe(ep, qp) < 0) { qp_put_wqe(ep, qp); OPAL_THREAD_LOCK(&ep->endpoint_lock); opal_list_append(&ep->pending_get_frags, (opal_list_item_t*)frag); OPAL_THREAD_UNLOCK(&ep->endpoint_lock); return OMPI_SUCCESS; } /* check for a get token */ if(OPAL_THREAD_ADD32(&ep->get_tokens,-1) < 0) { qp_put_wqe(ep, qp); OPAL_THREAD_ADD32(&ep->get_tokens,1); OPAL_THREAD_LOCK(&ep->endpoint_lock); opal_list_append(&ep->pending_get_frags, (opal_list_item_t*)frag); OPAL_THREAD_UNLOCK(&ep->endpoint_lock); return OMPI_SUCCESS; } #if OMPI_ENABLE_HETEROGENEOUS_SUPPORT if((ep->endpoint_proc->proc_ompi->proc_arch & OPAL_ARCH_ISBIGENDIAN) != (ompi_proc_local()->proc_arch & OPAL_ARCH_ISBIGENDIAN)) { rem_addr = opal_swap_bytes8(rem_addr); rkey = opal_swap_bytes4(rkey); } #endif frag->sr_desc.wr.rdma.remote_addr = rem_addr; frag->sr_desc.wr.rdma.rkey = rkey; to_com_frag(frag)->sg_entry.addr = (uint64_t)(uintptr_t)descriptor->des_dst->seg_addr.pval; to_com_frag(frag)->sg_entry.length = descriptor->des_dst->seg_len; to_com_frag(frag)->endpoint = ep; #if HAVE_XRC if (MCA_BTL_XRC_ENABLED && BTL_OPENIB_QP_TYPE_XRC(qp)) frag->sr_desc.xrc_remote_srq_num=ep->rem_info.rem_srqs[qp].rem_srq_num; #endif descriptor->order = qp; if(ibv_post_send(ep->qps[qp].qp->lcl_qp, &frag->sr_desc, &bad_wr)) return OMPI_ERROR; return OMPI_SUCCESS; } #if OPAL_ENABLE_FT == 0 int mca_btl_openib_ft_event(int state) { return OMPI_SUCCESS; } #else int mca_btl_openib_ft_event(int state) { int i; if(OPAL_CRS_CHECKPOINT == state) { /* Continue must reconstruct the routes (including modex), since we * have to tear down the devices completely. */ ompi_cr_continue_like_restart = true; /* * To keep the node from crashing we need to call ibv_close_device * before the checkpoint is taken. To do this we need to tear * everything down, and rebuild it all on continue/restart. :( */ /* Shutdown all modules * - Do this backwards since the openib_finalize function also loops * over this variable. */ for (i = 0; i < mca_btl_openib_component.ib_num_btls; ++i ) { mca_btl_openib_finalize_resources( &(mca_btl_openib_component.openib_btls[i])->super); } mca_btl_openib_component.devices_count = 0; mca_btl_openib_component.ib_num_btls = 0; OBJ_DESTRUCT(&mca_btl_openib_component.ib_procs); ompi_btl_openib_connect_base_finalize(); } else if(OPAL_CRS_CONTINUE == state) { ; /* Cleared by forcing the modex, no work needed */ } else if(OPAL_CRS_RESTART == state) { ; } else if(OPAL_CRS_TERM == state ) { ; } else { ; } return OMPI_SUCCESS; } #endif /* OPAL_ENABLE_FT */