/* * Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana * University Research and Technology * Corporation. All rights reserved. * Copyright (c) 2004-2006 The University of Tennessee and The University * of Tennessee Research Foundation. All rights * reserved. * Copyright (c) 2004-2005 High Performance Computing Center Stuttgart, * University of Stuttgart. All rights reserved. * Copyright (c) 2004-2005 The Regents of the University of California. * All rights reserved. * $COPYRIGHT$ * * Additional copyrights may follow * * $HEADER$ */ #include "ompi_config.h" #include "mpi.h" #include "ompi/constants.h" #include "ompi/datatype/datatype.h" #include "ompi/communicator/communicator.h" #include "ompi/mca/coll/coll.h" #include "ompi/mca/coll/base/coll_tags.h" #include "ompi/mca/pml/pml.h" #include "ompi/op/op.h" #include "coll_tuned.h" #include "coll_tuned_topo.h" /** * This is a generic implementation of the reduce protocol. It used the tree * provided as an argument and execute all operations using a segment of * count times a datatype. * For the last communication it will update the count in order to limit * th number of datatype to the original count (original_count) */ int ompi_coll_tuned_reduce_generic( void* sendbuf, void* recvbuf, int original_count, ompi_datatype_t* datatype, ompi_op_t* op, int root, ompi_communicator_t* comm, ompi_coll_tree_t* tree, int count_by_segment ) { char *inbuf[2] = {(char*)NULL, (char*)NULL}; char *local_op_buffer, *accumbuf = NULL, *sendtmpbuf; ptrdiff_t extent, lower_bound; size_t typelng, realsegsize; ompi_request_t* reqs[2] = {MPI_REQUEST_NULL, MPI_REQUEST_NULL}; int num_segments, line, ret, segindex, i, rank; int recvcount, prevcount, inbi, previnbi; /** * Determine number of segments and number of elements * sent per operation */ ompi_ddt_get_extent( datatype, &lower_bound, &extent ); ompi_ddt_type_size( datatype, &typelng ); num_segments = (original_count + count_by_segment - 1) / count_by_segment; realsegsize = count_by_segment * extent; sendtmpbuf = (char*) sendbuf; if( sendbuf == MPI_IN_PLACE ) { sendtmpbuf = (char *)recvbuf; } rank = ompi_comm_rank(comm); /* non-leaf nodes - wait for children to send me data & forward up (if needed) */ if( tree->tree_nextsize > 0 ) { /* handle non existant recv buffer (i.e. its NULL.. like basic allreduce uses!) */ accumbuf = (char*)recvbuf; if( NULL == accumbuf ) { accumbuf = (char*)malloc(realsegsize * num_segments); /* TO BE OPTIMIZED */ if (accumbuf == NULL) { line = __LINE__; ret = -1; goto error_hndl; } } /* Allocate two buffers for incoming segments */ inbuf[0] = (char*) malloc(realsegsize); if( inbuf[0] == NULL ) { line = __LINE__; ret = -1; goto error_hndl; } /* if there is chance to overlap communication - allocate second buffer */ if( (num_segments > 1) || (tree->tree_nextsize > 1) ) { inbuf[1] = (char*) malloc(realsegsize); if( inbuf[1] == NULL ) { line = __LINE__; ret = -1; goto error_hndl;} } else { inbuf[1] = NULL; } /* reset input buffer index and receive count */ inbi = 0; recvcount = 0; /* for each segment */ for( segindex = 0; segindex <= num_segments; segindex++ ) { prevcount = recvcount; /* recvcount - number of elements in current segment */ recvcount = count_by_segment; if( segindex == (num_segments-1) ) recvcount = original_count - count_by_segment * segindex; /* for each child */ for( i = 0; i < tree->tree_nextsize; i++ ) { /** * We try to overlap communication: * either with next segment or with the next child */ /* post irecv for current segindex on current child */ if( segindex < num_segments ) { void* local_recvbuf = inbuf[inbi]; if( 0 == i ) { /* for the first step (1st child per segment) we might be able to * irecv directly into the accumulate buffer so that we can * reduce(op) this with our sendbuf in one step as ompi_op_reduce * only has two buffer pointers, this avoids an extra memory copy. * * BUT if we are root and are USING MPI_IN_PLACE this is wrong ek! * check for root might not be needed as it should be checked higher up */ if( !((MPI_IN_PLACE == sendbuf) && (rank == tree->tree_root)) ) { local_recvbuf = accumbuf + segindex * realsegsize; } } ret = MCA_PML_CALL(irecv(local_recvbuf, recvcount,datatype, tree->tree_next[i], MCA_COLL_BASE_TAG_REDUCE, comm, &reqs[inbi])); if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; } } /* wait for previous req to complete, if any */ previnbi = (inbi+1) % 2; /* wait on data from last child for previous segment */ ret = ompi_request_wait_all( 1, &reqs[previnbi], MPI_STATUSES_IGNORE ); if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; } local_op_buffer = inbuf[previnbi]; if( i > 0 ) { /* our first operation is to combine our own [sendbuf] data with the data * we recvd from down stream (but only if we are not root and not using * MPI_IN_PLACE) */ if( 1 == i ) { if( !((MPI_IN_PLACE == sendbuf) && (rank == tree->tree_root)) ) { local_op_buffer = sendtmpbuf + segindex * realsegsize; } } /* apply operation */ ompi_op_reduce(op, local_op_buffer, accumbuf+segindex*realsegsize, recvcount, datatype ); } else if ( segindex > 0 ) { void* accumulator = accumbuf + (segindex-1) * realsegsize; if( tree->tree_nextsize <= 1 ) { if( !((MPI_IN_PLACE == sendbuf) && (rank == tree->tree_root)) ) { local_op_buffer = sendtmpbuf+(segindex-1)*realsegsize; } } ompi_op_reduce(op, local_op_buffer, accumulator, prevcount, datatype ); /* all reduced on available data this step (i) complete, pass to * the next process unless your the root */ if (rank != tree->tree_root) { /* send combined/accumulated data to parent */ ret = MCA_PML_CALL( send( accumulator, prevcount, datatype, tree->tree_prev, MCA_COLL_BASE_TAG_REDUCE, MCA_PML_BASE_SEND_STANDARD, comm) ); if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; } } /* we stop when segindex = number of segments (i.e. we do num_segment+1 steps to allow for pipelining */ if (segindex == num_segments) break; } /* update input buffer index */ inbi = previnbi; } /* end of for each child */ } /* end of for each segment */ /* clean up */ if( inbuf[0] != NULL) free(inbuf[0]); if( inbuf[1] != NULL) free(inbuf[1]); if( NULL == recvbuf ) free(accumbuf); } /* leaf nodes */ else { /* Send segmented data to parents */ segindex = 0; while( original_count > 0 ) { if( original_count < count_by_segment ) count_by_segment = original_count; ret = MCA_PML_CALL( send((char*)sendbuf + segindex * realsegsize, count_by_segment, datatype, tree->tree_prev, MCA_COLL_BASE_TAG_REDUCE, MCA_PML_BASE_SEND_STANDARD, comm) ); if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; } segindex++; original_count -= count_by_segment; } } return OMPI_SUCCESS; error_hndl: /* error handler */ OPAL_OUTPUT (( ompi_coll_tuned_stream, "ERROR_HNDL: node %d file %s line %d error %d\n", rank, __FILE__, line, ret )); if( inbuf[0] != NULL ) free(inbuf[0]); if( inbuf[1] != NULL ) free(inbuf[1]); if( (NULL == recvbuf) && (NULL != accumbuf) ) free(accumbuf); return ret; } /* Attention: this version of the reduce operations does not work for: - non-commutative operations - segment sizes which are not multiplies of the extent of the datatype meaning that at least one datatype must fit in the segment ! */ int ompi_coll_tuned_reduce_intra_chain( void *sendbuf, void *recvbuf, int count, ompi_datatype_t* datatype, ompi_op_t* op, int root, ompi_communicator_t* comm, uint32_t segsize, int fanout) { int segcount = count; size_t typelng; OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_chain rank %d fo %d ss %5d", ompi_comm_rank(comm), fanout, segsize)); COLL_TUNED_UPDATE_CHAIN( comm, root, fanout ); /** * Determine number of segments and number of elements * sent per operation */ ompi_ddt_type_size( datatype, &typelng ); COLL_TUNED_COMPUTED_SEGCOUNT( segsize, typelng, segcount ); return ompi_coll_tuned_reduce_generic( sendbuf, recvbuf, count, datatype, op, root, comm, comm->c_coll_selected_data->cached_chain, segcount ); } int ompi_coll_tuned_reduce_intra_pipeline( void *sendbuf, void *recvbuf, int count, ompi_datatype_t* datatype, ompi_op_t* op, int root, ompi_communicator_t* comm, uint32_t segsize ) { int segcount = count; size_t typelng; OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_pipeline rank %d ss %5d", ompi_comm_rank(comm), segsize)); COLL_TUNED_UPDATE_PIPELINE( comm, root ); /** * Determine number of segments and number of elements * sent per operation */ ompi_ddt_type_size( datatype, &typelng ); COLL_TUNED_COMPUTED_SEGCOUNT( segsize, typelng, segcount ); return ompi_coll_tuned_reduce_generic( sendbuf, recvbuf, count, datatype, op, root, comm, comm->c_coll_selected_data->cached_pipeline, segcount ); } int ompi_coll_tuned_reduce_intra_binary( void *sendbuf, void *recvbuf, int count, ompi_datatype_t* datatype, ompi_op_t* op, int root, ompi_communicator_t* comm, uint32_t segsize ) { int segcount = count; size_t typelng; OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_binary rank %d ss %5d", ompi_comm_rank(comm), segsize)); COLL_TUNED_UPDATE_BINTREE( comm, root ); /** * Determine number of segments and number of elements * sent per operation */ ompi_ddt_type_size( datatype, &typelng ); COLL_TUNED_COMPUTED_SEGCOUNT( segsize, typelng, segcount ); return ompi_coll_tuned_reduce_generic( sendbuf, recvbuf, count, datatype, op, root, comm, comm->c_coll_selected_data->cached_bintree, segcount ); } int ompi_coll_tuned_reduce_intra_binomial( void *sendbuf, void *recvbuf, int count, ompi_datatype_t* datatype, ompi_op_t* op, int root, ompi_communicator_t* comm, uint32_t segsize ) { int segcount = count; size_t typelng; OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_binomial rank %d ss %5d", ompi_comm_rank(comm), segsize)); COLL_TUNED_UPDATE_BMTREE( comm, root ); /** * Determine number of segments and number of elements * sent per operation */ ompi_ddt_type_size( datatype, &typelng ); COLL_TUNED_COMPUTED_SEGCOUNT( segsize, typelng, segcount ); return ompi_coll_tuned_reduce_generic( sendbuf, recvbuf, count, datatype, op, root, comm, comm->c_coll_selected_data->cached_bmtree, segcount ); } /* * Linear functions are copied from the BASIC coll module * they do not segment the message and are simple implementations * but for some small number of nodes and/or small data sizes they * are just as fast as tuned/tree based segmenting operations * and as such may be selected by the decision functions * These are copied into this module due to the way we select modules * in V1. i.e. in V2 we will handle this differently and so will not * have to duplicate code. * GEF Oct05 after asking Jeff. */ /* copied function (with appropriate renaming) starts here */ /* * reduce_lin_intra * * Function: - reduction using O(N) algorithm * Accepts: - same as MPI_Reduce() * Returns: - MPI_SUCCESS or error code */ int ompi_coll_tuned_reduce_intra_basic_linear(void *sbuf, void *rbuf, int count, struct ompi_datatype_t *dtype, struct ompi_op_t *op, int root, struct ompi_communicator_t *comm) { int i, rank, err, size; ptrdiff_t true_lb, true_extent, lb, extent; char *free_buffer = NULL; char *pml_buffer = NULL; char *inplace_temp = NULL; char *inbuf; /* Initialize */ rank = ompi_comm_rank(comm); size = ompi_comm_size(comm); OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_basic_linear rank %d", rank)); /* If not root, send data to the root. */ if (rank != root) { err = MCA_PML_CALL(send(sbuf, count, dtype, root, MCA_COLL_BASE_TAG_REDUCE, MCA_PML_BASE_SEND_STANDARD, comm)); return err; } /* see discussion in ompi_coll_basic_reduce_lin_intra about extent and true extend */ /* for reducing buffer allocation lengths.... */ ompi_ddt_get_extent(dtype, &lb, &extent); ompi_ddt_get_true_extent(dtype, &true_lb, &true_extent); if (MPI_IN_PLACE == sbuf) { sbuf = rbuf; inplace_temp = (char*)malloc(true_extent + (count - 1) * extent); if (NULL == inplace_temp) { return OMPI_ERR_OUT_OF_RESOURCE; } rbuf = inplace_temp - lb; } if (size > 1) { free_buffer = (char*)malloc(true_extent + (count - 1) * extent); if (NULL == free_buffer) { return OMPI_ERR_OUT_OF_RESOURCE; } pml_buffer = free_buffer - lb; } /* Initialize the receive buffer. */ if (rank == (size - 1)) { err = ompi_ddt_copy_content_same_ddt(dtype, count, (char*)rbuf, (char*)sbuf); } else { err = MCA_PML_CALL(recv(rbuf, count, dtype, size - 1, MCA_COLL_BASE_TAG_REDUCE, comm, MPI_STATUS_IGNORE)); } if (MPI_SUCCESS != err) { if (NULL != free_buffer) { free(free_buffer); } return err; } /* Loop receiving and calling reduction function (C or Fortran). */ for (i = size - 2; i >= 0; --i) { if (rank == i) { inbuf = (char*)sbuf; } else { err = MCA_PML_CALL(recv(pml_buffer, count, dtype, i, MCA_COLL_BASE_TAG_REDUCE, comm, MPI_STATUS_IGNORE)); if (MPI_SUCCESS != err) { if (NULL != free_buffer) { free(free_buffer); } return err; } inbuf = pml_buffer; } /* Perform the reduction */ ompi_op_reduce(op, inbuf, rbuf, count, dtype); } if (NULL != inplace_temp) { err = ompi_ddt_copy_content_same_ddt(dtype, count, (char*)sbuf, inplace_temp); free(inplace_temp); } if (NULL != free_buffer) { free(free_buffer); } /* All done */ return MPI_SUCCESS; } /* copied function (with appropriate renaming) ends here */ /** * The following are used by dynamic and forced rules * * publish details of each algorithm and if its forced/fixed/locked in * as you add methods/algorithms you must update this and the query/map routines * * this routine is called by the component only * this makes sure that the mca parameters are set to their initial values and perms * module does not call this they call the forced_getvalues routine instead */ int ompi_coll_tuned_reduce_intra_check_forced_init (coll_tuned_force_algorithm_mca_param_indices_t *mca_param_indices) { int rc, requested_alg, max_alg = 5; ompi_coll_tuned_forced_max_algorithms[REDUCE] = max_alg; rc = mca_base_param_reg_int (&mca_coll_tuned_component.super.collm_version, "reduce_algorithm_count", "Number of reduce algorithms available", false, true, max_alg, NULL); mca_param_indices->algorithm_param_index = mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version, "reduce_algorithm", "Which reduce algorithm is used. Can be locked down to choice of: 0 ignore, 1 linear, 2 chain, 3 pipeline, 4 binary, 5 binomial", false, false, 0, NULL); mca_base_param_lookup_int(mca_param_indices->algorithm_param_index, &(requested_alg)); if( requested_alg > max_alg ) { if( 0 == ompi_comm_rank( MPI_COMM_WORLD ) ) { opal_output( 0, "Reduce algorithm #%d is not available (range [0..%d]). Switching back to ignore(0)\n", requested_alg, max_alg ); } mca_base_param_set_int( mca_param_indices->algorithm_param_index, 0); } mca_param_indices->segsize_param_index = mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version, "reduce_algorithm_segmentsize", "Segment size in bytes used by default for reduce algorithms. Only has meaning if algorithm is forced and supports segmenting. 0 bytes means no segmentation.", false, false, 0, NULL); mca_param_indices->tree_fanout_param_index = mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version, "reduce_algorithm_tree_fanout", "Fanout for n-tree used for reduce algorithms. Only has meaning if algorithm is forced and supports n-tree topo based operation.", false, false, ompi_coll_tuned_init_tree_fanout, /* get system wide default */ NULL); mca_param_indices->chain_fanout_param_index = mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version, "reduce_algorithm_chain_fanout", "Fanout for chains used for reduce algorithms. Only has meaning if algorithm is forced and supports chain topo based operation.", false, false, ompi_coll_tuned_init_chain_fanout, /* get system wide default */ NULL); return (MPI_SUCCESS); } int ompi_coll_tuned_reduce_intra_do_forced(void *sbuf, void* rbuf, int count, struct ompi_datatype_t *dtype, struct ompi_op_t *op, int root, struct ompi_communicator_t *comm) { OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_do_forced selected algorithm %d", comm->c_coll_selected_data->user_forced[REDUCE].algorithm)); switch (comm->c_coll_selected_data->user_forced[REDUCE].algorithm) { case (0): return ompi_coll_tuned_reduce_intra_dec_fixed (sbuf, rbuf, count, dtype, op, root, comm); case (1): return ompi_coll_tuned_reduce_intra_basic_linear (sbuf, rbuf, count, dtype, op, root, comm); case (2): return ompi_coll_tuned_reduce_intra_chain (sbuf, rbuf, count, dtype, op, root, comm, comm->c_coll_selected_data->user_forced[REDUCE].segsize, comm->c_coll_selected_data->user_forced[REDUCE].chain_fanout); case (3): return ompi_coll_tuned_reduce_intra_pipeline (sbuf, rbuf, count, dtype, op, root, comm, comm->c_coll_selected_data->user_forced[REDUCE].segsize); case (4): return ompi_coll_tuned_reduce_intra_binary (sbuf, rbuf, count, dtype, op, root, comm, comm->c_coll_selected_data->user_forced[REDUCE].segsize); case (5): return ompi_coll_tuned_reduce_intra_binomial (sbuf, rbuf, count, dtype, op, root, comm, comm->c_coll_selected_data->user_forced[REDUCE].segsize); default: OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_do_forced attempt to select algorithm %d when only 0-%d is valid?", comm->c_coll_selected_data->user_forced[REDUCE].algorithm, ompi_coll_tuned_forced_max_algorithms[REDUCE])); return (MPI_ERR_ARG); } /* switch */ } int ompi_coll_tuned_reduce_intra_do_this(void *sbuf, void* rbuf, int count, struct ompi_datatype_t *dtype, struct ompi_op_t *op, int root, struct ompi_communicator_t *comm, int algorithm, int faninout, int segsize) { OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_do_this selected algorithm %d topo faninout %d segsize %d", algorithm, faninout, segsize)); switch (algorithm) { case (0): return ompi_coll_tuned_reduce_intra_dec_fixed (sbuf, rbuf, count, dtype, op, root, comm); case (1): return ompi_coll_tuned_reduce_intra_basic_linear (sbuf, rbuf, count, dtype, op, root, comm); case (2): return ompi_coll_tuned_reduce_intra_chain (sbuf, rbuf, count, dtype, op, root, comm, segsize, faninout); case (3): return ompi_coll_tuned_reduce_intra_pipeline (sbuf, rbuf, count, dtype, op, root, comm, segsize); case (4): return ompi_coll_tuned_reduce_intra_binary (sbuf, rbuf, count, dtype, op, root, comm, segsize); case (5): return ompi_coll_tuned_reduce_intra_binomial (sbuf, rbuf, count, dtype, op, root, comm, segsize); default: OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_do_this attempt to select algorithm %d when only 0-%d is valid?", algorithm, ompi_coll_tuned_forced_max_algorithms[REDUCE])); return (MPI_ERR_ARG); } /* switch */ }