/* * Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana * University Research and Technology * Corporation. All rights reserved. * Copyright (c) 2004-2006 The University of Tennessee and The University * of Tennessee Research Foundation. All rights * reserved. * Copyright (c) 2004-2005 High Performance Computing Center Stuttgart, * University of Stuttgart. All rights reserved. * Copyright (c) 2004-2005 The Regents of the University of California. * All rights reserved. * $COPYRIGHT$ * * Additional copyrights may follow * * $HEADER$ */ /** @file */ #ifndef MCA_COLL_SM2_EXPORT_H #define MCA_COLL_SM2_EXPORT_H #include "ompi_config.h" #include "mpi.h" #include "opal/mca/mca.h" /*#include "orte/mca/ns/ns_types.h" */ #include "ompi/mca/coll/coll.h" #include "ompi/mca/mpool/mpool.h" #include "ompi/mca/common/sm/common_sm_mmap.h" #include "ompi/request/request.h" BEGIN_C_DECLS #ifdef HAVE_SCHED_YIELD # include # define SPIN sched_yield() #elif defined(__WINDOWS__) # define SPIN SwitchToThread() #else /* no switch available */ # define SPIN #endif /* * Memory Management * - All memory allocation will be done on a per-communictor basis * - The two banks of memory will be used * - Each bank of memory will have M buffers * - These buffers will be used in a cirucular buffer order * - Each buffer will be contigous in virtual memory, and will have page-aligned * regions belonging to each process in the communicator * - The memory associated with each process will have a control region, and * a data region. * - First touch will be used to enforce memory locality, and thus relies on * processor affinity to be set. * - A non-blocking collective will be issued when all buffers in a bank have * been used. This will be completed before this bank is re-used. */ /** * Structure to hold the sm coll component. First it holds the * base coll component, and then holds a bunch of * sm-coll-component-specific stuff (e.g., current MCA param * values). */ struct mca_coll_sm2_component_t { /** Base coll component */ mca_coll_base_component_1_1_0_t super; /** MCA parameter: Priority of this component */ int sm2_priority; /** MCA parameter: control region size (bytes), per proc */ size_t sm2_ctl_size_per_proc; /** MCA parameter: control region size (bytes) actually allocated - per proc*/ size_t sm2_ctl_size_allocated; /** MCA parameter: control region alignment */ size_t sm2_ctl_alignment; /** MCA parameter: Max data Segment size */ size_t sm2_max_data_seg_size; /** MCA parameter: Min data Segment size */ size_t sm2_data_seg_size; /** MCA parameter: control data size (bytes) actually allocated - per proc*/ size_t sm2_data_size_allocated; /** MCA parameter: data region alignment */ int sm2_data_alignment; /** MCA parameter: number of memory banks */ int sm2_num_mem_banks; /** MCA parameter: number of regions per memory bank */ int sm2_num_regions_per_bank; /** MCA parameter: order of buffer management barrier tree */ int order_barrier_tree; /** MCA parameter: order of reduction tree */ int order_reduction_tree; /** MCA parameter: order of fan-out read tree */ int order_fanout_read_tree; }; /** * Convenience typedef */ typedef struct mca_coll_sm2_component_t mca_coll_sm2_component_t; /* enum for node type */ enum{ ROOT_NODE, LEAF_NODE, INTERIOR_NODE }; /* * N-order tree node description */ struct tree_node_t { /* my rank within the group */ int my_rank; /* my node type - root, leaf, or interior */ int my_node_type; /* number of nodes in the tree */ int tree_size; /* number of parents (0/1) */ int n_parents; /* number of children */ int n_children; /* parent rank within the group */ int parent_rank; /* chidren ranks within the group */ int *children_ranks; }; typedef struct tree_node_t tree_node_t; /* * Pair-wise data exchange */ /* enum for node type */ enum{ EXCHANGE_NODE, EXTRA_NODE }; struct pair_exchange_node_t { /* number of nodes this node will exchange data with */ int n_exchanges; /* ranks of nodes involved in data exchnge */ int *rank_exchanges; /* number of extra sources of data - outside largest power of 2 in * this group */ int n_extra_sources; /* rank of the extra source */ int rank_extra_source; /* number of tags needed per stripe */ int n_tags; /* node type */ int node_type; }; typedef struct pair_exchange_node_t pair_exchange_node_t; /* * Barrier request objects */ /* shared memory data strucutures */ struct mca_coll_sm2_nb_request_process_shared_mem_t { /* flag used to indicate the status of this memory region */ volatile long long flag; volatile long long index; /* pading */ /* Note: need to change this so it takes less memory */ char padding[2*CACHE_LINE_SIZE-2*sizeof(long long)]; }; typedef struct mca_coll_sm2_nb_request_process_shared_mem_t mca_coll_sm2_nb_request_process_shared_mem_t; /* enum for phase at which the nb barrier is in */ enum{ NB_BARRIER_INACTIVE, NB_BARRIER_FAN_IN, NB_BARRIER_FAN_OUT, /* done and not started are the same for all practicle * purposes, as the init funtion always sets this flag */ NB_BARRIER_DONE }; /* forward declartion */ struct mca_coll_sm2_module_t; /* process private barrier request object */ struct mca_coll_sm2_nb_request_process_private_mem_t { struct ompi_request_t super; /* tag that will be used as unique barrier identifier */ long long tag; /* barrier phase */ int sm2_barrier_phase; /* shared memory strucuture index - will be flip-flopping between structures */ int sm_index; /* this processes base address of the barrier shared memory region */ mca_coll_sm2_nb_request_process_shared_mem_t *barrier_base_address[2]; /* module pointer */ struct mca_coll_sm2_module_t *coll_sm2_module; }; typedef struct mca_coll_sm2_nb_request_process_private_mem_t mca_coll_sm2_nb_request_process_private_mem_t; struct mca_coll_sm2_module_t { /* base structure */ mca_coll_base_module_1_1_0_t super; /* size */ int comm_size; /* Shared Memory file name */ char *coll_sm2_file_name; /* size of shared memory backing file */ size_t size_sm2_backing_file; /* Memory pointer to shared file */ char *shared_memory_region; /* Pointer to the collective buffers */ char *collective_buffer_region; /* size of memory region, per process, for memory bank management */ size_t sm2_size_management_region_per_proc; /* size of each memory segment */ size_t segment_size; /* size, per process, of each memory segment */ size_t segement_size_per_process; /* size, per process and segment , of control region */ size_t ctl_memory_per_proc_per_segment; /* size, per process and segment , of data region */ size_t data_memory_per_proc_per_segment; /* number of memory banks */ int sm2_module_num_memory_banks; /* number of buffers per memory bank */ int sm2_module_num_regions_per_bank; /* total number of working buffers */ int sm2_module_num_buffers; /* allocated buffer index - local counter */ int sm2_allocated_buffer_index; /* freed allocated buffer index - local counter */ int sm2_freed_buffer_index; /* index of first buffer in next memory bank - need to * make sure next bank is ready for use, before we use it. * We complete the non-blocking barrier before allocating * this buffer. */ int sm2_first_buffer_index_next_bank; /* index of last buffer in this memory bank - * We start the non-blocking barrier after allocating * this buffer. */ int sm2_last_buffer_index_this_bank; /* communicator - there is a one-to-one association between * the communicator and the module */ struct ompi_communicator_t *module_comm; /* non-blocking barrier strcutres used for mangeing the shared * buffers */ tree_node_t sm_buffer_mgmt_barrier_tree; /* request objects for the non-blocking barrier */ mca_coll_sm2_nb_request_process_private_mem_t *barrier_request; /* barrier request to progress */ int current_request_index; /* unique tag used for non-blocking collectives */ long long nb_barrier_tag; /* multinumial reduction tree */ tree_node_t *reduction_tree; /* multinumial fan-out read tree */ tree_node_t *fanout_read_tree; /* recursive-doubling tree node */ pair_exchange_node_t recursive_doubling_tree; /* collective tag */ long long collective_tag; }; typedef struct mca_coll_sm2_module_t mca_coll_sm2_module_t; OBJ_CLASS_DECLARATION(mca_coll_sm2_module_t); /** * Global component instance */ OMPI_MODULE_DECLSPEC extern mca_coll_sm2_component_t mca_coll_sm2_component; /* * coll module functions */ /* query to see if the component is available for use, and can * satisfy the thread and progress requirements */ int mca_coll_sm2_init_query(bool enable_progress_threads, bool enable_mpi_threads); /* query to see if the module is available for use on the given * communicator, and if so, what it's priority is. */ struct mca_coll_base_module_1_1_0_t * mca_coll_sm2_comm_query(struct ompi_communicator_t *comm, int *priority); /* setup an multi-nomial tree - for each node in the tree * this returns it's parent, and it's children */ int setup_multinomial_tree(int tree_order, int num_nodes, tree_node_t *tree_nodes); /* setup recursive doubleing tree node */ int setup_recursive_doubling_tree_node(int num_nodes, int node_rank, pair_exchange_node_t *tree_node); /* non-blocking barrier - init function */ int mca_coll_sm2_nbbarrier_intra(struct ompi_communicator_t *comm, mca_coll_sm2_nb_request_process_private_mem_t *request, struct mca_coll_base_module_1_1_0_t *module); /* non-blocking barrier - completion function */ int mca_coll_sm2_nbbarrier_intra_progress(struct ompi_communicator_t *comm, mca_coll_sm2_nb_request_process_private_mem_t *request, struct mca_coll_base_module_1_1_0_t *module); /* allocate working buffer */ char *alloc_sm2_shared_buffer(mca_coll_sm2_module_t *module); /* free working buffer - it is assumed that buffers are released in * the order they are allocated. We can assume this because each * communiator will have only one outstanding collective at a given * time, and we ensure that operations are completed in order. */ int free_sm2_shared_buffer(mca_coll_sm2_module_t *module); /** * Shared memory blocking allreduce. */ int mca_coll_sm2_allreduce_intra(void *sbuf, void *rbuf, int count, struct ompi_datatype_t *dtype, struct ompi_op_t *op, struct ompi_communicator_t *comm, struct mca_coll_base_module_1_1_0_t *module); /** * Macro to setup flag usage */ #define FLAG_SETUP(flag_num, flag, data) \ (flag) = (mca_coll_sm_in_use_flag_t*) \ (((char *) (data)->mcb_in_use_flags) + \ ((flag_num) * mca_coll_sm_component.sm_control_size)) /** * Macro to wait for the in-use flag to become idle (used by the root) */ #define FLAG_WAIT_FOR_IDLE(flag) \ while (0 != (flag)->mcsiuf_num_procs_using) SPIN /** * Macro to wait for a flag to indicate that it's ready for this * operation (used by non-root processes to know when FLAG_SET() has * been called) */ #define FLAG_WAIT_FOR_OP(flag, op) \ while ((op) != flag->mcsiuf_operation_count) SPIN /** * Macro to set an in-use flag with relevant data to claim it */ #define FLAG_RETAIN(flag, num_procs, op_count) \ (flag)->mcsiuf_num_procs_using = (num_procs); \ (flag)->mcsiuf_operation_count = (op_count) /** * Macro to release an in-use flag from this process */ #define FLAG_RELEASE(flag) \ opal_atomic_add(&(flag)->mcsiuf_num_procs_using, -1) /** * Macro to copy a single segment in from a user buffer to a shared * segment */ #define COPY_FRAGMENT_IN(convertor, index, rank, iov, max_data) \ (iov).iov_base = \ (index)->mcbmi_data + \ ((rank) * mca_coll_sm_component.sm_fragment_size); \ (max_data) = (iov).iov_len = mca_coll_sm_component.sm_fragment_size; \ ompi_convertor_pack(&(convertor), &(iov), &mca_coll_sm_iov_size, \ &(max_data) ) /** * Macro to copy a single segment out from a shared segment to a user * buffer */ #define COPY_FRAGMENT_OUT(convertor, src_rank, index, iov, max_data) \ (iov).iov_base = (((char*) (index)->mcbmi_data) + \ ((src_rank) * mca_coll_sm_component.sm_fragment_size)); \ ompi_convertor_unpack(&(convertor), &(iov), &mca_coll_sm_iov_size, \ &(max_data) ) /** * Macro to memcpy a fragment between one shared segment and another */ #define COPY_FRAGMENT_BETWEEN(src_rank, dest_rank, index, len) \ memcpy(((index)->mcbmi_data + \ ((dest_rank) * mca_coll_sm_component.sm_fragment_size)), \ ((index)->mcbmi_data + \ ((src_rank) * \ mca_coll_sm_component.sm_fragment_size)), \ (len)) /** * Macro to tell children that a segment is ready (normalize * the child's ID based on the shift used to calculate the "me" node * in the tree). Used in fan out opertations. */ #define PARENT_NOTIFY_CHILDREN(children, num_children, index, value) \ do { \ for (i = 0; i < (num_children); ++i) { \ *((size_t*) \ (((char*) index->mcbmi_control) + \ (mca_coll_sm_component.sm_control_size * \ (((children)[i]->mcstn_id + root) % size)))) = (value); \ } \ } while (0) /** * Macro for childen to wait for parent notification (use real rank). * Save the value passed and then reset it when done. Used in fan out * operations. */ #define CHILD_WAIT_FOR_NOTIFY(rank, index, value) \ do { \ uint32_t volatile *ptr = ((uint32_t*) \ (((char*) index->mcbmi_control) + \ ((rank) * mca_coll_sm_component.sm_control_size))); \ while (0 == *ptr) SPIN; \ (value) = *ptr; \ *ptr = 0; \ } while (0) /** * Macro for children to tell parent that the data is ready in their * segment. Used for fan in operations. */ #define CHILD_NOTIFY_PARENT(child_rank, parent_rank, index, value) \ ((size_t volatile *) \ (((char*) (index)->mcbmi_control) + \ (mca_coll_sm_component.sm_control_size * \ (parent_rank))))[(child_rank)] = (value) /** * Macro for parent to wait for a specific child to tell it that the * data is in the child's segment. Save the value when done. Used * for fan in operations. */ #define PARENT_WAIT_FOR_NOTIFY_SPECIFIC(child_rank, parent_rank, index, value) \ do { \ size_t volatile *ptr = ((size_t volatile *) \ (((char*) index->mcbmi_control) + \ (mca_coll_sm_component.sm_control_size * \ (parent_rank)))) + child_rank; \ while (0 == *ptr) SPIN; \ (value) = *ptr; \ *ptr = 0; \ } while (0) END_C_DECLS #endif /* MCA_COLL_SM2_EXPORT_H */