/* * Copyright (c) 2014 Cisco Systems, Inc. All rights reserved. * $COPYRIGHT$ * * Additional copyrights may follow * * $HEADER$ */ /* Implements an adjacency-list-based weighted directed graph (digraph), * focused on supporting bipartite digraphs and flow-network problems. * * Note that some operations might be more efficient if this structure were * converted to use an adjacency matrix instead of an adjacency list. OTOH * that complicates other pieces of the implementation (specifically, adding * and removing edges). */ #ifndef BTL_USNIC_GRAPH_H #define BTL_USNIC_GRAPH_H #include "opal_config.h" struct opal_btl_usnic_vertex_t; struct opal_btl_usnic_edge_t; struct opal_btl_usnic_graph_t; typedef struct opal_btl_usnic_vertex_t opal_btl_usnic_vertex_t; typedef struct opal_btl_usnic_edge_t opal_btl_usnic_edge_t; typedef struct opal_btl_usnic_graph_t opal_btl_usnic_graph_t; /** * callback function pointer type for cleaning up user data associated with a * vertex or edge */ typedef void (*opal_btl_usnic_cleanup_fn_t)(void *user_data); /** * create a new empty graph * * Any new vertices will have NULL user data associated. * * @param[in] v_data_cleanup_fn cleanup function to use for vertex user data * @param[in] e_data_cleanup_fn cleanup function to use for edge user data * @param[out] g_out the created graph * * @returns OPAL_SUCCESS or an OMPI error code */ int opal_btl_usnic_gr_create(opal_btl_usnic_cleanup_fn_t v_data_cleanup_fn, opal_btl_usnic_cleanup_fn_t e_data_cleanup_fn, opal_btl_usnic_graph_t **g_out); /** * free the given graph * * Any user data associated with vertices or edges in the graph will have * the given edge/vertex cleanup callback invoked in some arbitrary order. * * @returns OPAL_SUCCESS or an OMPI error code */ int opal_btl_usnic_gr_free(opal_btl_usnic_graph_t *g); /** * clone (deep copy) the given graph * * Note that copy_user_data==true is not currently supported (requires the * addition of a copy callback for user data). * * @param[in] g the graph to clone * @param[in] copy_user_data if true, copy vertex/edge user data to the new * graph * @param[in] g_clone_out the resulting cloned graph * @returns OPAL_SUCCESS or an OMPI error code */ int opal_btl_usnic_gr_clone(const opal_btl_usnic_graph_t *g, bool copy_user_data, opal_btl_usnic_graph_t **g_clone_out); /** * return the number of edges for which this vertex is a destination * * @param[in] g the graph to query * @param[in] vertex the vertex id to query * @returns the number of edges for which this vertex is a destination */ int opal_btl_usnic_gr_indegree(const opal_btl_usnic_graph_t *g, int vertex); /** * return the number of edges for which this vertex is a source * * @param[in] g the graph to query * @param[in] vertex the vertex id to query * @returns the number of edges for which this vertex is a source */ int opal_btl_usnic_gr_outdegree(const opal_btl_usnic_graph_t *g, int vertex); /** * add an edge to the given graph * * @param[in] from source vertex ID * @param[in] to target vertex ID * @param[in] cost cost value for this edge (lower is better) * @param[in] capacity maximum flow transmissible on this edge * @param[in] e_data caller data to associate with this edge, useful for * debugging or minimizing state shared across components * * @returns OPAL_SUCCESS or an OMPI error code */ int opal_btl_usnic_gr_add_edge(opal_btl_usnic_graph_t *g, int from, int to, int64_t cost, int capacity, void *e_data); /** * add a vertex to the given graph * * @param[in] g graph to manipulate * @param[in] v_data data to associate with the new vertex * @param[out] index_out integer index of the new vertex. May be NULL. * * @returns OPAL_SUCCESS or an OMPI error code */ int opal_btl_usnic_gr_add_vertex(opal_btl_usnic_graph_t *g, void *v_data, int *index_out); /** * compute the order of a graph (number of vertices) * * @param[in] g the graph to query */ int opal_btl_usnic_gr_order(const opal_btl_usnic_graph_t *g); /** * This function solves the "assignment problem": * http://en.wikipedia.org/wiki/Assignment_problem * * The goal is to find a maximum cardinality, minimum cost matching in a * weighted bipartite graph. Maximum cardinality takes priority over minimum * cost. * * Capacities in the given graph are ignored (assumed to be 1 at the start). * It is also assumed that the graph only contains edges from one vertex set * to the other and that no edges exist in the reverse direction ("forward" * edges only). * * The algorithm(s) used will be deterministic. That is, given the exact same * graph, two calls to this routine will result in the same matching result. * * @param[in] g an acyclic bipartite directed graph for * which a matching is sought * @param[out] num_match_edges_out number edges found in the matching * @param[out] match_edges_out an array of (u,v) vertex pairs indicating * which edges are in the matching * * @returns OPAL_SUCCESS or an OMPI error code */ int opal_btl_usnic_solve_bipartite_assignment(const opal_btl_usnic_graph_t *g, int *num_match_edges_out, int **match_edges_out); #endif /* BTL_USNIC_GRAPH_H */