#include "malloc_defs.h" /* $Id: malloc.c,v 1.4 2006/03/30 16:47:29 wg Exp $ This version of malloc.c was adapted for ptmalloc3 by Wolfram Gloger . Therefore, some of the comments below do not apply for this modified version. However, it is the intention to keep differences to Doug Lea's original version minimal, hence the comments were mostly left unchanged. ----------------------------------------------------------------------- This is a version (aka dlmalloc) of malloc/free/realloc written by Doug Lea and released to the public domain, as explained at http://creativecommons.org/licenses/publicdomain. Send questions, comments, complaints, performance data, etc to dl@cs.oswego.edu * Version pre-2.8.4 Wed Mar 29 19:46:29 2006 (dl at gee) Note: There may be an updated version of this malloc obtainable at ftp://gee.cs.oswego.edu/pub/misc/malloc.c Check before installing! * Quickstart This library is all in one file to simplify the most common usage: ftp it, compile it (-O3), and link it into another program. All of the compile-time options default to reasonable values for use on most platforms. You might later want to step through various compile-time and dynamic tuning options. For convenience, an include file for code using this malloc is at: ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h You don't really need this .h file unless you call functions not defined in your system include files. The .h file contains only the excerpts from this file needed for using this malloc on ANSI C/C++ systems, so long as you haven't changed compile-time options about naming and tuning parameters. If you do, then you can create your own malloc.h that does include all settings by cutting at the point indicated below. Note that you may already by default be using a C library containing a malloc that is based on some version of this malloc (for example in linux). You might still want to use the one in this file to customize settings or to avoid overheads associated with library versions. * Vital statistics: Supported pointer/size_t representation: 4 or 8 bytes size_t MUST be an unsigned type of the same width as pointers. (If you are using an ancient system that declares size_t as a signed type, or need it to be a different width than pointers, you can use a previous release of this malloc (e.g. 2.7.2) supporting these.) Alignment: 8 bytes (default) This suffices for nearly all current machines and C compilers. However, you can define MALLOC_ALIGNMENT to be wider than this if necessary (up to 128bytes), at the expense of using more space. Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) 8 or 16 bytes (if 8byte sizes) Each malloced chunk has a hidden word of overhead holding size and status information, and additional cross-check word if FOOTERS is defined. Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) 8-byte ptrs: 32 bytes (including overhead) Even a request for zero bytes (i.e., malloc(0)) returns a pointer to something of the minimum allocatable size. The maximum overhead wastage (i.e., number of extra bytes allocated than were requested in malloc) is less than or equal to the minimum size, except for requests >= mmap_threshold that are serviced via mmap(), where the worst case wastage is about 32 bytes plus the remainder from a system page (the minimal mmap unit); typically 4096 or 8192 bytes. Security: static-safe; optionally more or less The "security" of malloc refers to the ability of malicious code to accentuate the effects of errors (for example, freeing space that is not currently malloc'ed or overwriting past the ends of chunks) in code that calls malloc. This malloc guarantees not to modify any memory locations below the base of heap, i.e., static variables, even in the presence of usage errors. The routines additionally detect most improper frees and reallocs. All this holds as long as the static bookkeeping for malloc itself is not corrupted by some other means. This is only one aspect of security -- these checks do not, and cannot, detect all possible programming errors. If FOOTERS is defined nonzero, then each allocated chunk carries an additional check word to verify that it was malloced from its space. These check words are the same within each execution of a program using malloc, but differ across executions, so externally crafted fake chunks cannot be freed. This improves security by rejecting frees/reallocs that could corrupt heap memory, in addition to the checks preventing writes to statics that are always on. This may further improve security at the expense of time and space overhead. (Note that FOOTERS may also be worth using with MSPACES.) By default detected errors cause the program to abort (calling "abort()"). You can override this to instead proceed past errors by defining PROCEED_ON_ERROR. In this case, a bad free has no effect, and a malloc that encounters a bad address caused by user overwrites will ignore the bad address by dropping pointers and indices to all known memory. This may be appropriate for programs that should continue if at all possible in the face of programming errors, although they may run out of memory because dropped memory is never reclaimed. If you don't like either of these options, you can define CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything else. And if if you are sure that your program using malloc has no errors or vulnerabilities, you can define INSECURE to 1, which might (or might not) provide a small performance improvement. Thread-safety: NOT thread-safe unless USE_LOCKS defined When USE_LOCKS is defined, each public call to malloc, free, etc is surrounded with either a pthread mutex or a win32 spinlock (depending on WIN32). This is not especially fast, and can be a major bottleneck. It is designed only to provide minimal protection in concurrent environments, and to provide a basis for extensions. If you are using malloc in a concurrent program, consider instead using nedmalloc (http://www.nedprod.com/programs/portable/nedmalloc/) or ptmalloc (See http://www.malloc.de), which are derived from versions of this malloc. System requirements: Any combination of MORECORE and/or MMAP/MUNMAP This malloc can use unix sbrk or any emulation (invoked using the CALL_MORECORE macro) and/or mmap/munmap or any emulation (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system memory. On most unix systems, it tends to work best if both MORECORE and MMAP are enabled. On Win32, it uses emulations based on VirtualAlloc. It also uses common C library functions like memset. Compliance: I believe it is compliant with the Single Unix Specification (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably others as well. * Overview of algorithms This is not the fastest, most space-conserving, most portable, or most tunable malloc ever written. However it is among the fastest while also being among the most space-conserving, portable and tunable. Consistent balance across these factors results in a good general-purpose allocator for malloc-intensive programs. In most ways, this malloc is a best-fit allocator. Generally, it chooses the best-fitting existing chunk for a request, with ties broken in approximately least-recently-used order. (This strategy normally maintains low fragmentation.) However, for requests less than 256bytes, it deviates from best-fit when there is not an exactly fitting available chunk by preferring to use space adjacent to that used for the previous small request, as well as by breaking ties in approximately most-recently-used order. (These enhance locality of series of small allocations.) And for very large requests (>= 256Kb by default), it relies on system memory mapping facilities, if supported. (This helps avoid carrying around and possibly fragmenting memory used only for large chunks.) All operations (except malloc_stats and mallinfo) have execution times that are bounded by a constant factor of the number of bits in a size_t, not counting any clearing in calloc or copying in realloc, or actions surrounding MORECORE and MMAP that have times proportional to the number of non-contiguous regions returned by system allocation routines, which is often just 1. In real-time applications, you can optionally suppress segment traversals using NO_SEGMENT_TRAVERSAL, which assures bounded execution even when system allocators return non-contiguous spaces, at the typical expense of carrying around more memory and increased fragmentation. The implementation is not very modular and seriously overuses macros. Perhaps someday all C compilers will do as good a job inlining modular code as can now be done by brute-force expansion, but now, enough of them seem not to. Some compilers issue a lot of warnings about code that is dead/unreachable only on some platforms, and also about intentional uses of negation on unsigned types. All known cases of each can be ignored. For a longer but out of date high-level description, see http://gee.cs.oswego.edu/dl/html/malloc.html * MSPACES If MSPACES is defined, then in addition to malloc, free, etc., this file also defines mspace_malloc, mspace_free, etc. These are versions of malloc routines that take an "mspace" argument obtained using create_mspace, to control all internal bookkeeping. If ONLY_MSPACES is defined, only these versions are compiled. So if you would like to use this allocator for only some allocations, and your system malloc for others, you can compile with ONLY_MSPACES and then do something like... static mspace mymspace = create_mspace(0,0); // for example #define mymalloc(bytes) mspace_malloc(mymspace, bytes) (Note: If you only need one instance of an mspace, you can instead use "USE_DL_PREFIX" to relabel the global malloc.) You can similarly create thread-local allocators by storing mspaces as thread-locals. For example: static __thread mspace tlms = 0; void* tlmalloc(size_t bytes) { if (tlms == 0) tlms = create_mspace(0, 0); return mspace_malloc(tlms, bytes); } void tlfree(void* mem) { mspace_free(tlms, mem); } Unless FOOTERS is defined, each mspace is completely independent. You cannot allocate from one and free to another (although conformance is only weakly checked, so usage errors are not always caught). If FOOTERS is defined, then each chunk carries around a tag indicating its originating mspace, and frees are directed to their originating spaces. ------------------------- Compile-time options --------------------------- Be careful in setting #define values for numerical constants of type size_t. On some systems, literal values are not automatically extended to size_t precision unless they are explicitly casted. You can also use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below. WIN32 default: defined if _WIN32 defined Defining WIN32 sets up defaults for MS environment and compilers. Otherwise defaults are for unix. MALLOC_ALIGNMENT default: (size_t)8 Controls the minimum alignment for malloc'ed chunks. It must be a power of two and at least 8, even on machines for which smaller alignments would suffice. It may be defined as larger than this though. Note however that code and data structures are optimized for the case of 8-byte alignment. MSPACES default: 0 (false) If true, compile in support for independent allocation spaces. This is only supported if DL_HAVE_MMAP is true. ONLY_MSPACES default: 0 (false) If true, only compile in mspace versions, not regular versions. USE_LOCKS default: 0 (false) Causes each call to each public routine to be surrounded with pthread or WIN32 mutex lock/unlock. (If set true, this can be overridden on a per-mspace basis for mspace versions.) If set to a non-zero value other than 1, locks are used, but their implementation is left out, so lock functions must be supplied manually. USE_SPIN_LOCKS default: 1 iff USE_LOCKS and on x86 using gcc or MSC If true, uses custom spin locks for locking. This is currently supported only for x86 platforms using gcc or recent MS compilers. Otherwise, posix locks or win32 critical sections are used. FOOTERS default: 0 If true, provide extra checking and dispatching by placing information in the footers of allocated chunks. This adds space and time overhead. INSECURE default: 0 If true, omit checks for usage errors and heap space overwrites. USE_DL_PREFIX default: NOT defined Causes compiler to prefix all public routines with the string 'dl'. This can be useful when you only want to use this malloc in one part of a program, using your regular system malloc elsewhere. ABORT default: defined as abort() Defines how to abort on failed checks. On most systems, a failed check cannot die with an "assert" or even print an informative message, because the underlying print routines in turn call malloc, which will fail again. Generally, the best policy is to simply call abort(). It's not very useful to do more than this because many errors due to overwriting will show up as address faults (null, odd addresses etc) rather than malloc-triggered checks, so will also abort. Also, most compilers know that abort() does not return, so can better optimize code conditionally calling it. PROCEED_ON_ERROR default: defined as 0 (false) Controls whether detected bad addresses cause them to bypassed rather than aborting. If set, detected bad arguments to free and realloc are ignored. And all bookkeeping information is zeroed out upon a detected overwrite of freed heap space, thus losing the ability to ever return it from malloc again, but enabling the application to proceed. If PROCEED_ON_ERROR is defined, the static variable malloc_corruption_error_count is compiled in and can be examined to see if errors have occurred. This option generates slower code than the default abort policy. DL_DEBUG default: NOT defined The DL_DEBUG setting is mainly intended for people trying to modify this code or diagnose problems when porting to new platforms. However, it may also be able to better isolate user errors than just using runtime checks. The assertions in the check routines spell out in more detail the assumptions and invariants underlying the algorithms. The checking is fairly extensive, and will slow down execution noticeably. Calling malloc_stats or mallinfo with DL_DEBUG set will attempt to check every non-mmapped allocated and free chunk in the course of computing the summaries. ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) Debugging assertion failures can be nearly impossible if your version of the assert macro causes malloc to be called, which will lead to a cascade of further failures, blowing the runtime stack. ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), which will usually make debugging easier. MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 The action to take before "return 0" when malloc fails to be able to return memory because there is none available. HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES True if this system supports sbrk or an emulation of it. MORECORE default: sbrk The name of the sbrk-style system routine to call to obtain more memory. See below for guidance on writing custom MORECORE functions. The type of the argument to sbrk/MORECORE varies across systems. It cannot be size_t, because it supports negative arguments, so it is normally the signed type of the same width as size_t (sometimes declared as "intptr_t"). It doesn't much matter though. Internally, we only call it with arguments less than half the max value of a size_t, which should work across all reasonable possibilities, although sometimes generating compiler warnings. See near the end of this file for guidelines for creating a custom version of MORECORE. MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE If true, take advantage of fact that consecutive calls to MORECORE with positive arguments always return contiguous increasing addresses. This is true of unix sbrk. It does not hurt too much to set it true anyway, since malloc copes with non-contiguities. Setting it false when definitely non-contiguous saves time and possibly wasted space it would take to discover this though. MORECORE_CANNOT_TRIM default: NOT defined True if MORECORE cannot release space back to the system when given negative arguments. This is generally necessary only if you are using a hand-crafted MORECORE function that cannot handle negative arguments. NO_SEGMENT_TRAVERSAL default: 0 If non-zero, suppresses traversals of memory segments returned by either MORECORE or CALL_MMAP. This disables merging of segments that are contiguous, and selectively releasing them to the OS if unused, but bounds execution times. DL_HAVE_MMAP default: 1 (true) True if this system supports mmap or an emulation of it. If so, and HAVE_MORECORE is not true, MMAP is used for all system allocation. If set and HAVE_MORECORE is true as well, MMAP is primarily used to directly allocate very large blocks. It is also used as a backup strategy in cases where MORECORE fails to provide space from system. Note: A single call to MUNMAP is assumed to be able to unmap memory that may have be allocated using multiple calls to MMAP, so long as they are adjacent. DL_HAVE_MREMAP default: 1 on linux, else 0 If true realloc() uses mremap() to re-allocate large blocks and extend or shrink allocation spaces. MMAP_CLEARS default: 1 except on WINCE. True if mmap clears memory so calloc doesn't need to. This is true for standard unix mmap using /dev/zero and on WIN32 except for WINCE. USE_BUILTIN_FFS default: 0 (i.e., not used) Causes malloc to use the builtin ffs() function to compute indices. Some compilers may recognize and intrinsify ffs to be faster than the supplied C version. Also, the case of x86 using gcc is special-cased to an asm instruction, so is already as fast as it can be, and so this setting has no effect. Similarly for Win32 under recent MS compilers. (On most x86s, the asm version is only slightly faster than the C version.) malloc_getpagesize default: derive from system includes, or 4096. The system page size. To the extent possible, this malloc manages memory from the system in page-size units. This may be (and usually is) a function rather than a constant. This is ignored if WIN32, where page size is determined using getSystemInfo during initialization. USE_DEV_RANDOM default: 0 (i.e., not used) Causes malloc to use /dev/random to initialize secure magic seed for stamping footers. Otherwise, the current time is used. NO_MALLINFO default: 0 If defined, don't compile "mallinfo". This can be a simple way of dealing with mismatches between system declarations and those in this file. MALLINFO_FIELD_TYPE default: size_t The type of the fields in the mallinfo struct. This was originally defined as "int" in SVID etc, but is more usefully defined as size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set REALLOC_ZERO_BYTES_FREES default: not defined This should be set if a call to realloc with zero bytes should be the same as a call to free. Some people think it should. Otherwise, since this malloc returns a unique pointer for malloc(0), so does realloc(p, 0). LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H LACKS_STDLIB_H default: NOT defined unless on WIN32 Define these if your system does not have these header files. You might need to manually insert some of the declarations they provide. DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, system_info.dwAllocationGranularity in WIN32, otherwise 64K. Also settable using mallopt(M_GRANULARITY, x) The unit for allocating and deallocating memory from the system. On most systems with contiguous MORECORE, there is no reason to make this more than a page. However, systems with MMAP tend to either require or encourage larger granularities. You can increase this value to prevent system allocation functions to be called so often, especially if they are slow. The value must be at least one page and must be a power of two. Setting to 0 causes initialization to either page size or win32 region size. (Note: In previous versions of malloc, the equivalent of this option was called "TOP_PAD") DEFAULT_TRIM_THRESHOLD default: 2MB Also settable using mallopt(M_TRIM_THRESHOLD, x) The maximum amount of unused top-most memory to keep before releasing via malloc_trim in free(). Automatic trimming is mainly useful in long-lived programs using contiguous MORECORE. Because trimming via sbrk can be slow on some systems, and can sometimes be wasteful (in cases where programs immediately afterward allocate more large chunks) the value should be high enough so that your overall system performance would improve by releasing this much memory. As a rough guide, you might set to a value close to the average size of a process (program) running on your system. Releasing this much memory would allow such a process to run in memory. Generally, it is worth tuning trim thresholds when a program undergoes phases where several large chunks are allocated and released in ways that can reuse each other's storage, perhaps mixed with phases where there are no such chunks at all. The trim value must be greater than page size to have any useful effect. To disable trimming completely, you can set to MAX_SIZE_T. Note that the trick some people use of mallocing a huge space and then freeing it at program startup, in an attempt to reserve system memory, doesn't have the intended effect under automatic trimming, since that memory will immediately be returned to the system. DEFAULT_MMAP_THRESHOLD default: 256K Also settable using mallopt(M_MMAP_THRESHOLD, x) The request size threshold for using MMAP to directly service a request. Requests of at least this size that cannot be allocated using already-existing space will be serviced via mmap. (If enough normal freed space already exists it is used instead.) Using mmap segregates relatively large chunks of memory so that they can be individually obtained and released from the host system. A request serviced through mmap is never reused by any other request (at least not directly; the system may just so happen to remap successive requests to the same locations). Segregating space in this way has the benefits that: Mmapped space can always be individually released back to the system, which helps keep the system level memory demands of a long-lived program low. Also, mapped memory doesn't become `locked' between other chunks, as can happen with normally allocated chunks, which means that even trimming via malloc_trim would not release them. However, it has the disadvantage that the space cannot be reclaimed, consolidated, and then used to service later requests, as happens with normal chunks. The advantages of mmap nearly always outweigh disadvantages for "large" chunks, but the value of "large" may vary across systems. The default is an empirically derived value that works well in most systems. You can disable mmap by setting to MAX_SIZE_T. MAX_RELEASE_CHECK_RATE default: 255 unless not DL_HAVE_MMAP The number of consolidated frees between checks to release unused segments when freeing. When using non-contiguous segments, especially with multiple mspaces, checking only for topmost space doesn't always suffice to trigger trimming. To compensate for this, free() will, with a period of MAX_RELEASE_CHECK_RATE (or the current number of segments, if greater) try to release unused segments to the OS when freeing chunks that result in consolidation. The best value for this parameter is a compromise between slowing down frees with relatively costly checks that rarely trigger versus holding on to unused memory. To effectively disable, set to MAX_SIZE_T. This may lead to a very slight speed improvement at the expense of carrying around more memory. */ #if defined(DARWIN) || defined(_DARWIN) /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ #ifndef HAVE_MORECORE #define HAVE_MORECORE 0 #define DL_HAVE_MMAP 1 #endif /* HAVE_MORECORE */ #endif /* DARWIN */ #ifndef LACKS_SYS_TYPES_H #include /* For size_t */ #endif /* LACKS_SYS_TYPES_H */ /* The maximum possible size_t value has all bits set */ #define MAX_SIZE_T (~(size_t)0) #ifndef ONLY_MSPACES #define ONLY_MSPACES 0 #endif /* ONLY_MSPACES */ #ifndef MSPACES #if ONLY_MSPACES #define MSPACES 1 #else /* ONLY_MSPACES */ #define MSPACES 0 #endif /* ONLY_MSPACES */ #endif /* MSPACES */ #ifndef MALLOC_ALIGNMENT #define MALLOC_ALIGNMENT ((size_t)8U) #endif /* MALLOC_ALIGNMENT */ #ifndef FOOTERS #define FOOTERS 0 #endif /* FOOTERS */ #ifndef ABORT #define ABORT abort() #endif /* ABORT */ #ifndef ABORT_ON_ASSERT_FAILURE #define ABORT_ON_ASSERT_FAILURE 1 #endif /* ABORT_ON_ASSERT_FAILURE */ #ifndef PROCEED_ON_ERROR #define PROCEED_ON_ERROR 0 #endif /* PROCEED_ON_ERROR */ #ifndef USE_LOCKS #define USE_LOCKS 0 #endif /* USE_LOCKS */ #ifndef USE_SPIN_LOCKS #if USE_LOCKS && (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))) || (defined(_MSC_VER) && _MSC_VER>=1310) #define USE_SPIN_LOCKS 1 #else #define USE_SPIN_LOCKS 0 #endif /* USE_LOCKS && ... */ #endif /* USE_SPIN_LOCKS */ #ifndef INSECURE #define INSECURE 0 #endif /* INSECURE */ #ifndef DL_HAVE_MMAP #define DL_HAVE_MMAP 1 #endif /* DL_HAVE_MMAP */ #ifndef MMAP_CLEARS #define MMAP_CLEARS 1 #endif /* MMAP_CLEARS */ #ifndef DL_HAVE_MREMAP #ifdef linux #define DL_HAVE_MREMAP 1 #else /* linux */ #define DL_HAVE_MREMAP 0 #endif /* linux */ #endif /* DL_HAVE_MREMAP */ #ifndef MALLOC_FAILURE_ACTION #define MALLOC_FAILURE_ACTION errno = ENOMEM; #endif /* MALLOC_FAILURE_ACTION */ #ifndef HAVE_MORECORE #if ONLY_MSPACES #define HAVE_MORECORE 0 #else /* ONLY_MSPACES */ #define HAVE_MORECORE 1 #endif /* ONLY_MSPACES */ #endif /* HAVE_MORECORE */ #if !HAVE_MORECORE #define MORECORE_CONTIGUOUS 0 #else /* !HAVE_MORECORE */ #ifndef MORECORE #define MORECORE sbrk #endif /* MORECORE */ #ifndef MORECORE_CONTIGUOUS #define MORECORE_CONTIGUOUS 1 #endif /* MORECORE_CONTIGUOUS */ #endif /* HAVE_MORECORE */ #ifndef DEFAULT_GRANULARITY #if MORECORE_CONTIGUOUS #define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */ #else /* MORECORE_CONTIGUOUS */ #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) #endif /* MORECORE_CONTIGUOUS */ #endif /* DEFAULT_GRANULARITY */ #ifndef DEFAULT_TRIM_THRESHOLD #ifndef MORECORE_CANNOT_TRIM #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) #else /* MORECORE_CANNOT_TRIM */ #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T #endif /* MORECORE_CANNOT_TRIM */ #endif /* DEFAULT_TRIM_THRESHOLD */ #ifndef DEFAULT_MMAP_THRESHOLD #if DL_HAVE_MMAP #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) #else /* DL_HAVE_MMAP */ #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T #endif /* DL_HAVE_MMAP */ #endif /* DEFAULT_MMAP_THRESHOLD */ #ifndef MAX_RELEASE_CHECK_RATE #if DL_HAVE_MMAP #define MAX_RELEASE_CHECK_RATE 255 #else #define MAX_RELEASE_CHECK_RATE MAX_SIZE_T #endif /* DL_HAVE_MMAP */ #endif /* MAX_RELEASE_CHECK_RATE */ #ifndef USE_BUILTIN_FFS #define USE_BUILTIN_FFS 0 #endif /* USE_BUILTIN_FFS */ #ifndef USE_DEV_RANDOM #define USE_DEV_RANDOM 0 #endif /* USE_DEV_RANDOM */ #ifndef NO_MALLINFO #define NO_MALLINFO 0 #endif /* NO_MALLINFO */ #ifndef MALLINFO_FIELD_TYPE #define MALLINFO_FIELD_TYPE size_t #endif /* MALLINFO_FIELD_TYPE */ #ifndef NO_SEGMENT_TRAVERSAL #define NO_SEGMENT_TRAVERSAL 0 #endif /* NO_SEGMENT_TRAVERSAL */ /* mallopt tuning options. SVID/XPG defines four standard parameter numbers for mallopt, normally defined in malloc.h. None of these are used in this malloc, so setting them has no effect. But this malloc does support the following options. */ #define M_TRIM_THRESHOLD (-1) #define M_GRANULARITY (-2) #define M_MMAP_THRESHOLD (-3) /* ------------------------ Mallinfo declarations ------------------------ */ #if !NO_MALLINFO /* This version of malloc supports the standard SVID/XPG mallinfo routine that returns a struct containing usage properties and statistics. It should work on any system that has a /usr/include/malloc.h defining struct mallinfo. The main declaration needed is the mallinfo struct that is returned (by-copy) by mallinfo(). The malloinfo struct contains a bunch of fields that are not even meaningful in this version of malloc. These fields are are instead filled by mallinfo() with other numbers that might be of interest. HAVE_USR_INCLUDE_MALLOC_H should be set if you have a /usr/include/malloc.h file that includes a declaration of struct mallinfo. If so, it is included; else a compliant version is declared below. These must be precisely the same for mallinfo() to work. The original SVID version of this struct, defined on most systems with mallinfo, declares all fields as ints. But some others define as unsigned long. If your system defines the fields using a type of different width than listed here, you MUST #include your system version and #define HAVE_USR_INCLUDE_MALLOC_H. */ /* #define HAVE_USR_INCLUDE_MALLOC_H */ #ifdef HAVE_USR_INCLUDE_MALLOC_H #include "/usr/include/malloc.h" #else /* HAVE_USR_INCLUDE_MALLOC_H */ struct mallinfo { MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ MALLINFO_FIELD_TYPE smblks; /* always 0 */ MALLINFO_FIELD_TYPE hblks; /* always 0 */ MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ MALLINFO_FIELD_TYPE fordblks; /* total free space */ MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ }; #endif /* HAVE_USR_INCLUDE_MALLOC_H */ #endif /* NO_MALLINFO */ /* Try to persuade compilers to inline. The most critical functions for inlining are defined as macros, so these aren't used for them. */ #ifndef FORCEINLINE #if defined(__GNUC__) #define FORCEINLINE __inline __attribute__ ((always_inline)) #elif defined(_MSC_VER) #define FORCEINLINE __forceinline #endif #endif #ifndef NOINLINE #if defined(__GNUC__) #define NOINLINE __attribute__ ((noinline)) #elif defined(_MSC_VER) #define NOINLINE __declspec(noinline) #else #define NOINLINE #endif #endif #ifdef __cplusplus extern "C" { #ifndef FORCEINLINE #define FORCEINLINE inline #endif #endif /* __cplusplus */ #ifndef FORCEINLINE #define FORCEINLINE #endif #if !ONLY_MSPACES /* ------------------- Declarations of public routines ------------------- */ #ifndef USE_DL_PREFIX #define dlcalloc calloc #define dlfree free #define dlmalloc malloc #define dlmemalign memalign #define dlrealloc realloc #define dlvalloc valloc #define dlpvalloc pvalloc #define dlmallinfo mallinfo #define dlmallopt mallopt #define dlmalloc_trim malloc_trim #define dlmalloc_stats malloc_stats #define dlmalloc_usable_size malloc_usable_size #define dlmalloc_footprint malloc_footprint #define dlmalloc_max_footprint malloc_max_footprint #define dlindependent_calloc independent_calloc #define dlindependent_comalloc independent_comalloc #endif /* USE_DL_PREFIX */ /* malloc(size_t n) Returns a pointer to a newly allocated chunk of at least n bytes, or null if no space is available, in which case errno is set to ENOMEM on ANSI C systems. If n is zero, malloc returns a minimum-sized chunk. (The minimum size is 16 bytes on most 32bit systems, and 32 bytes on 64bit systems.) Note that size_t is an unsigned type, so calls with arguments that would be negative if signed are interpreted as requests for huge amounts of space, which will often fail. The maximum supported value of n differs across systems, but is in all cases less than the maximum representable value of a size_t. */ void* dlmalloc(size_t); /* free(void* p) Releases the chunk of memory pointed to by p, that had been previously allocated using malloc or a related routine such as realloc. It has no effect if p is null. If p was not malloced or already freed, free(p) will by default cause the current program to abort. */ void dlfree(void*); /* calloc(size_t n_elements, size_t element_size); Returns a pointer to n_elements * element_size bytes, with all locations set to zero. */ void* dlcalloc(size_t, size_t); /* realloc(void* p, size_t n) Returns a pointer to a chunk of size n that contains the same data as does chunk p up to the minimum of (n, p's size) bytes, or null if no space is available. The returned pointer may or may not be the same as p. The algorithm prefers extending p in most cases when possible, otherwise it employs the equivalent of a malloc-copy-free sequence. If p is null, realloc is equivalent to malloc. If space is not available, realloc returns null, errno is set (if on ANSI) and p is NOT freed. if n is for fewer bytes than already held by p, the newly unused space is lopped off and freed if possible. realloc with a size argument of zero (re)allocates a minimum-sized chunk. The old unix realloc convention of allowing the last-free'd chunk to be used as an argument to realloc is not supported. */ void* dlrealloc(void*, size_t); /* memalign(size_t alignment, size_t n); Returns a pointer to a newly allocated chunk of n bytes, aligned in accord with the alignment argument. The alignment argument should be a power of two. If the argument is not a power of two, the nearest greater power is used. 8-byte alignment is guaranteed by normal malloc calls, so don't bother calling memalign with an argument of 8 or less. Overreliance on memalign is a sure way to fragment space. */ void* dlmemalign(size_t, size_t); /* valloc(size_t n); Equivalent to memalign(pagesize, n), where pagesize is the page size of the system. If the pagesize is unknown, 4096 is used. */ void* dlvalloc(size_t); /* mallopt(int parameter_number, int parameter_value) Sets tunable parameters The format is to provide a (parameter-number, parameter-value) pair. mallopt then sets the corresponding parameter to the argument value if it can (i.e., so long as the value is meaningful), and returns 1 if successful else 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, normally defined in malloc.h. None of these are use in this malloc, so setting them has no effect. But this malloc also supports other options in mallopt. See below for details. Briefly, supported parameters are as follows (listed defaults are for "typical" configurations). Symbol param # default allowed param values M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables) M_GRANULARITY -2 page size any power of 2 >= page size M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) */ int dlmallopt(int, int); /* malloc_footprint(); Returns the number of bytes obtained from the system. The total number of bytes allocated by malloc, realloc etc., is less than this value. Unlike mallinfo, this function returns only a precomputed result, so can be called frequently to monitor memory consumption. Even if locks are otherwise defined, this function does not use them, so results might not be up to date. */ size_t dlmalloc_footprint(void); /* malloc_max_footprint(); Returns the maximum number of bytes obtained from the system. This value will be greater than current footprint if deallocated space has been reclaimed by the system. The peak number of bytes allocated by malloc, realloc etc., is less than this value. Unlike mallinfo, this function returns only a precomputed result, so can be called frequently to monitor memory consumption. Even if locks are otherwise defined, this function does not use them, so results might not be up to date. */ size_t dlmalloc_max_footprint(void); #if !NO_MALLINFO /* mallinfo() Returns (by copy) a struct containing various summary statistics: arena: current total non-mmapped bytes allocated from system ordblks: the number of free chunks smblks: always zero. hblks: current number of mmapped regions hblkhd: total bytes held in mmapped regions usmblks: the maximum total allocated space. This will be greater than current total if trimming has occurred. fsmblks: always zero uordblks: current total allocated space (normal or mmapped) fordblks: total free space keepcost: the maximum number of bytes that could ideally be released back to system via malloc_trim. ("ideally" means that it ignores page restrictions etc.) Because these fields are ints, but internal bookkeeping may be kept as longs, the reported values may wrap around zero and thus be inaccurate. */ struct mallinfo dlmallinfo(void); #endif /* NO_MALLINFO */ /* independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); independent_calloc is similar to calloc, but instead of returning a single cleared space, it returns an array of pointers to n_elements independent elements that can hold contents of size elem_size, each of which starts out cleared, and can be independently freed, realloc'ed etc. The elements are guaranteed to be adjacently allocated (this is not guaranteed to occur with multiple callocs or mallocs), which may also improve cache locality in some applications. The "chunks" argument is optional (i.e., may be null, which is probably the most typical usage). If it is null, the returned array is itself dynamically allocated and should also be freed when it is no longer needed. Otherwise, the chunks array must be of at least n_elements in length. It is filled in with the pointers to the chunks. In either case, independent_calloc returns this pointer array, or null if the allocation failed. If n_elements is zero and "chunks" is null, it returns a chunk representing an array with zero elements (which should be freed if not wanted). Each element must be individually freed when it is no longer needed. If you'd like to instead be able to free all at once, you should instead use regular calloc and assign pointers into this space to represent elements. (In this case though, you cannot independently free elements.) independent_calloc simplifies and speeds up implementations of many kinds of pools. It may also be useful when constructing large data structures that initially have a fixed number of fixed-sized nodes, but the number is not known at compile time, and some of the nodes may later need to be freed. For example: struct Node { int item; struct Node* next; }; struct Node* build_list() { struct Node** pool; int n = read_number_of_nodes_needed(); if (n <= 0) return 0; pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); if (pool == 0) die(); // organize into a linked list... struct Node* first = pool[0]; for (i = 0; i < n-1; ++i) pool[i]->next = pool[i+1]; free(pool); // Can now free the array (or not, if it is needed later) return first; } */ void** dlindependent_calloc(size_t, size_t, void**); /* independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); independent_comalloc allocates, all at once, a set of n_elements chunks with sizes indicated in the "sizes" array. It returns an array of pointers to these elements, each of which can be independently freed, realloc'ed etc. The elements are guaranteed to be adjacently allocated (this is not guaranteed to occur with multiple callocs or mallocs), which may also improve cache locality in some applications. The "chunks" argument is optional (i.e., may be null). If it is null the returned array is itself dynamically allocated and should also be freed when it is no longer needed. Otherwise, the chunks array must be of at least n_elements in length. It is filled in with the pointers to the chunks. In either case, independent_comalloc returns this pointer array, or null if the allocation failed. If n_elements is zero and chunks is null, it returns a chunk representing an array with zero elements (which should be freed if not wanted). Each element must be individually freed when it is no longer needed. If you'd like to instead be able to free all at once, you should instead use a single regular malloc, and assign pointers at particular offsets in the aggregate space. (In this case though, you cannot independently free elements.) independent_comallac differs from independent_calloc in that each element may have a different size, and also that it does not automatically clear elements. independent_comalloc can be used to speed up allocation in cases where several structs or objects must always be allocated at the same time. For example: struct Head { ... } struct Foot { ... } void send_message(char* msg) { int msglen = strlen(msg); size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; void* chunks[3]; if (independent_comalloc(3, sizes, chunks) == 0) die(); struct Head* head = (struct Head*)(chunks[0]); char* body = (char*)(chunks[1]); struct Foot* foot = (struct Foot*)(chunks[2]); // ... } In general though, independent_comalloc is worth using only for larger values of n_elements. For small values, you probably won't detect enough difference from series of malloc calls to bother. Overuse of independent_comalloc can increase overall memory usage, since it cannot reuse existing noncontiguous small chunks that might be available for some of the elements. */ void** dlindependent_comalloc(size_t, size_t*, void**); /* pvalloc(size_t n); Equivalent to valloc(minimum-page-that-holds(n)), that is, round up n to nearest pagesize. */ void* dlpvalloc(size_t); /* malloc_trim(size_t pad); If possible, gives memory back to the system (via negative arguments to sbrk) if there is unused memory at the `high' end of the malloc pool or in unused MMAP segments. You can call this after freeing large blocks of memory to potentially reduce the system-level memory requirements of a program. However, it cannot guarantee to reduce memory. Under some allocation patterns, some large free blocks of memory will be locked between two used chunks, so they cannot be given back to the system. The `pad' argument to malloc_trim represents the amount of free trailing space to leave untrimmed. If this argument is zero, only the minimum amount of memory to maintain internal data structures will be left. Non-zero arguments can be supplied to maintain enough trailing space to service future expected allocations without having to re-obtain memory from the system. Malloc_trim returns 1 if it actually released any memory, else 0. */ int dlmalloc_trim(size_t); /* malloc_usable_size(void* p); Returns the number of bytes you can actually use in an allocated chunk, which may be more than you requested (although often not) due to alignment and minimum size constraints. You can use this many bytes without worrying about overwriting other allocated objects. This is not a particularly great programming practice. malloc_usable_size can be more useful in debugging and assertions, for example: p = malloc(n); assert(malloc_usable_size(p) >= 256); */ size_t dlmalloc_usable_size(void*); /* malloc_stats(); Prints on stderr the amount of space obtained from the system (both via sbrk and mmap), the maximum amount (which may be more than current if malloc_trim and/or munmap got called), and the current number of bytes allocated via malloc (or realloc, etc) but not yet freed. Note that this is the number of bytes allocated, not the number requested. It will be larger than the number requested because of alignment and bookkeeping overhead. Because it includes alignment wastage as being in use, this figure may be greater than zero even when no user-level chunks are allocated. The reported current and maximum system memory can be inaccurate if a program makes other calls to system memory allocation functions (normally sbrk) outside of malloc. malloc_stats prints only the most commonly interesting statistics. More information can be obtained by calling mallinfo. */ void dlmalloc_stats(void); #endif /* ONLY_MSPACES */ #if MSPACES /* mspace is an opaque type representing an independent region of space that supports mspace_malloc, etc. */ typedef void* mspace; /* create_mspace creates and returns a new independent space with the given initial capacity, or, if 0, the default granularity size. It returns null if there is no system memory available to create the space. If argument locked is non-zero, the space uses a separate lock to control access. The capacity of the space will grow dynamically as needed to service mspace_malloc requests. You can control the sizes of incremental increases of this space by compiling with a different DEFAULT_GRANULARITY or dynamically setting with mallopt(M_GRANULARITY, value). */ mspace create_mspace(size_t capacity, int locked); /* destroy_mspace destroys the given space, and attempts to return all of its memory back to the system, returning the total number of bytes freed. After destruction, the results of access to all memory used by the space become undefined. */ size_t destroy_mspace(mspace msp); /* create_mspace_with_base uses the memory supplied as the initial base of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this space is used for bookkeeping, so the capacity must be at least this large. (Otherwise 0 is returned.) When this initial space is exhausted, additional memory will be obtained from the system. Destroying this space will deallocate all additionally allocated space (if possible) but not the initial base. */ mspace create_mspace_with_base(void* base, size_t capacity, int locked); /* mspace_malloc behaves as malloc, but operates within the given space. */ void* mspace_malloc(mspace msp, size_t bytes); /* mspace_free behaves as free, but operates within the given space. If compiled with FOOTERS==1, mspace_free is not actually needed. free may be called instead of mspace_free because freed chunks from any space are handled by their originating spaces. */ void mspace_free(mspace msp, void* mem); /* mspace_realloc behaves as realloc, but operates within the given space. If compiled with FOOTERS==1, mspace_realloc is not actually needed. realloc may be called instead of mspace_realloc because realloced chunks from any space are handled by their originating spaces. */ void* mspace_realloc(mspace msp, void* mem, size_t newsize); /* mspace_calloc behaves as calloc, but operates within the given space. */ void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); /* mspace_memalign behaves as memalign, but operates within the given space. */ void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); /* mspace_independent_calloc behaves as independent_calloc, but operates within the given space. */ void** mspace_independent_calloc(mspace msp, size_t n_elements, size_t elem_size, void* chunks[]); /* mspace_independent_comalloc behaves as independent_comalloc, but operates within the given space. */ void** mspace_independent_comalloc(mspace msp, size_t n_elements, size_t sizes[], void* chunks[]); /* mspace_footprint() returns the number of bytes obtained from the system for this space. */ size_t mspace_footprint(mspace msp); /* mspace_max_footprint() returns the peak number of bytes obtained from the system for this space. */ size_t mspace_max_footprint(mspace msp); #if !NO_MALLINFO /* mspace_mallinfo behaves as mallinfo, but reports properties of the given space. */ struct mallinfo mspace_mallinfo(mspace msp); #endif /* NO_MALLINFO */ /* mspace_malloc_stats behaves as malloc_stats, but reports properties of the given space. */ void mspace_malloc_stats(mspace msp); /* mspace_trim behaves as malloc_trim, but operates within the given space. */ int mspace_trim(mspace msp, size_t pad); /* An alias for mallopt. */ int mspace_mallopt(int, int); #endif /* MSPACES */ #ifdef __cplusplus }; /* end of extern "C" */ #endif /* __cplusplus */ /* ======================================================================== To make a fully customizable malloc.h header file, cut everything above this line, put into file malloc.h, edit to suit, and #include it on the next line, as well as in programs that use this malloc. ======================================================================== */ /* #include "malloc.h" */ /*------------------------------ internal #includes ---------------------- */ #ifdef WIN32 #pragma warning( disable : 4146 ) /* no "unsigned" warnings */ #endif /* WIN32 */ #include /* for printing in malloc_stats */ #ifndef LACKS_ERRNO_H #include /* for MALLOC_FAILURE_ACTION */ #endif /* LACKS_ERRNO_H */ #if FOOTERS #include /* for magic initialization */ #endif /* FOOTERS */ #ifndef LACKS_STDLIB_H #include /* for abort() */ #endif /* LACKS_STDLIB_H */ #ifdef DL_DEBUG #if ABORT_ON_ASSERT_FAILURE #define dl_assert(x) if(!(x)) ABORT #else /* ABORT_ON_ASSERT_FAILURE */ #include #endif /* ABORT_ON_ASSERT_FAILURE */ #else /* DL_DEBUG */ #define dl_assert(x) assert(x) #include #endif /* DL_DEBUG */ #ifndef LACKS_STRING_H #include /* for memset etc */ #endif /* LACKS_STRING_H */ #if USE_BUILTIN_FFS #ifndef LACKS_STRINGS_H #include /* for ffs */ #endif /* LACKS_STRINGS_H */ #endif /* USE_BUILTIN_FFS */ #if DL_HAVE_MMAP #ifndef LACKS_SYS_MMAN_H #include /* for mmap */ #endif /* LACKS_SYS_MMAN_H */ #ifndef LACKS_FCNTL_H #include #endif /* LACKS_FCNTL_H */ #endif /* DL_HAVE_MMAP */ #if HAVE_MORECORE #ifndef LACKS_UNISTD_H #include /* for sbrk */ #else /* LACKS_UNISTD_H */ #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) extern void* sbrk(ptrdiff_t); #endif /* FreeBSD etc */ #endif /* LACKS_UNISTD_H */ #endif /* DL_HAVE_MMAP */ /* Declarations for locking */ #if USE_LOCKS #ifndef WIN32 #include #if defined (__SVR4) && defined (__sun) /* solaris */ #include #endif /* solaris */ #else #ifndef _M_AMD64 /* These are already defined on AMD64 builds */ #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ LONG __cdecl _InterlockedCompareExchange(LPLONG volatile Dest, LONG Exchange, LONG Comp); LONG __cdecl _InterlockedExchange(LPLONG volatile Target, LONG Value); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* _M_AMD64 */ #pragma intrinsic (_InterlockedCompareExchange) #pragma intrinsic (_InterlockedExchange) #define interlockedcompareexchange _InterlockedCompareExchange #define interlockedexchange _InterlockedExchange #endif /* Win32 */ #endif /* USE_LOCKS */ /* Declarations for bit scanning on win32 */ #if defined(_MSC_VER) && _MSC_VER>=1300 #ifndef BitScanForward /* Try to avoid pulling in WinNT.h */ #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ unsigned char _BitScanForward(unsigned long *index, unsigned long mask); unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); #ifdef __cplusplus } #endif /* __cplusplus */ #define BitScanForward _BitScanForward #define BitScanReverse _BitScanReverse #pragma intrinsic(_BitScanForward) #pragma intrinsic(_BitScanReverse) #endif /* BitScanForward */ #endif /* defined(_MSC_VER) && _MSC_VER>=1300 */ #ifndef WIN32 #ifndef malloc_getpagesize # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ # ifndef _SC_PAGE_SIZE # define _SC_PAGE_SIZE _SC_PAGESIZE # endif # endif # ifdef _SC_PAGE_SIZE # define malloc_getpagesize sysconf(_SC_PAGE_SIZE) # else # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) extern size_t getpagesize(); # define malloc_getpagesize getpagesize() # else # ifdef WIN32 /* use supplied emulation of getpagesize */ # define malloc_getpagesize getpagesize() # else # ifndef LACKS_SYS_PARAM_H # include # endif # ifdef EXEC_PAGESIZE # define malloc_getpagesize EXEC_PAGESIZE # else # ifdef NBPG # ifndef CLSIZE # define malloc_getpagesize NBPG # else # define malloc_getpagesize (NBPG * CLSIZE) # endif # else # ifdef NBPC # define malloc_getpagesize NBPC # else # ifdef PAGESIZE # define malloc_getpagesize PAGESIZE # else /* just guess */ # define malloc_getpagesize ((size_t)4096U) # endif # endif # endif # endif # endif # endif # endif #endif #endif /* ------------------- size_t and alignment properties -------------------- */ /* The byte and bit size of a size_t */ #define SIZE_T_SIZE (sizeof(size_t)) #define SIZE_T_BITSIZE (sizeof(size_t) << 3) /* Some constants coerced to size_t */ /* Annoying but necessary to avoid errors on some platforms */ #define SIZE_T_ZERO ((size_t)0) #define SIZE_T_ONE ((size_t)1) #define SIZE_T_TWO ((size_t)2) #define SIZE_T_FOUR ((size_t)4) #define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) #define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) #define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) #define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) /* The bit mask value corresponding to MALLOC_ALIGNMENT */ #define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) /* True if address a has acceptable alignment */ #define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) /* the number of bytes to offset an address to align it */ #define align_offset(A)\ ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) /* -------------------------- MMAP preliminaries ------------------------- */ /* If HAVE_MORECORE or DL_HAVE_MMAP are false, we just define calls and checks to fail so compiler optimizer can delete code rather than using so many "#if"s. */ /* MORECORE and MMAP must return MFAIL on failure */ #define MFAIL ((void*)(MAX_SIZE_T)) #define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ #if !DL_HAVE_MMAP #define IS_MMAPPED_BIT (SIZE_T_ZERO) #define USE_MMAP_BIT (SIZE_T_ZERO) #define CALL_MMAP(s) MFAIL #define CALL_MUNMAP(a, s) (-1) #define DIRECT_MMAP(s) MFAIL #else /* DL_HAVE_MMAP */ #define IS_MMAPPED_BIT (SIZE_T_ONE) #define USE_MMAP_BIT (SIZE_T_ONE) #ifndef WIN32 #define CALL_MUNMAP(a, s) munmap((a), (s)) #define MMAP_PROT (PROT_READ|PROT_WRITE) #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) #define MAP_ANONYMOUS MAP_ANON #endif /* MAP_ANON */ #ifdef MAP_ANONYMOUS #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) #define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) #else /* MAP_ANONYMOUS */ /* Nearly all versions of mmap support MAP_ANONYMOUS, so the following is unlikely to be needed, but is supplied just in case. */ #define MMAP_FLAGS (MAP_PRIVATE) static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ #define CALL_MMAP(s) ((dev_zero_fd < 0) ? \ (dev_zero_fd = open("/dev/zero", O_RDWR), \ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) #endif /* MAP_ANONYMOUS */ #define DIRECT_MMAP(s) CALL_MMAP(s) #else /* WIN32 */ /* Win32 MMAP via VirtualAlloc */ static FORCEINLINE void* win32mmap(size_t size) { void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); return (ptr != 0)? ptr: MFAIL; } /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ static FORCEINLINE void* win32direct_mmap(size_t size) { void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, PAGE_READWRITE); return (ptr != 0)? ptr: MFAIL; } /* This function supports releasing coalesed segments */ static FORCEINLINE int win32munmap(void* ptr, size_t size) { MEMORY_BASIC_INFORMATION minfo; char* cptr = (char*)ptr; while (size) { if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) return -1; if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || minfo.State != MEM_COMMIT || minfo.RegionSize > size) return -1; if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) return -1; cptr += minfo.RegionSize; size -= minfo.RegionSize; } return 0; } #define CALL_MMAP(s) win32mmap(s) #define CALL_MUNMAP(a, s) win32munmap((a), (s)) #define DIRECT_MMAP(s) win32direct_mmap(s) #endif /* WIN32 */ #endif /* DL_HAVE_MMAP */ #if DL_HAVE_MMAP && DL_HAVE_MREMAP #define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) #else /* DL_HAVE_MMAP && DL_HAVE_MREMAP */ #define CALL_MREMAP(addr, osz, nsz, mv) ((void)(addr),(void)(osz), \ (void)(nsz), (void)(mv),MFAIL) #endif /* DL_HAVE_MMAP && DL_HAVE_MREMAP */ #if HAVE_MORECORE #define CALL_MORECORE(S) MORECORE(S) #else /* HAVE_MORECORE */ #define CALL_MORECORE(S) MFAIL #endif /* HAVE_MORECORE */ /* mstate bit set if continguous morecore disabled or failed */ #define USE_NONCONTIGUOUS_BIT (4U) /* segment bit set in create_mspace_with_base */ #define EXTERN_BIT (8U) /* --------------------------- Lock preliminaries ------------------------ */ /* When locks are defined, there are up to two global locks: * If HAVE_MORECORE, morecore_mutex protects sequences of calls to MORECORE. In many cases sys_alloc requires two calls, that should not be interleaved with calls by other threads. This does not protect against direct calls to MORECORE by other threads not using this lock, so there is still code to cope the best we can on interference. * magic_init_mutex ensures that mparams.magic and other unique mparams values are initialized only once. To enable use in layered extensions, locks are reentrant. Because lock-protected regions generally have bounded times, we use the supplied simple spinlocks in the custom versions for x86. If USE_LOCKS is > 1, the definitions of lock routines here are bypassed, in which case you will need to define at least INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK, and NULL_LOCK_INITIALIZER, and possibly TRY_LOCK and IS_LOCKED (The latter two are not used in this malloc, but are commonly needed in extensions.) */ #if USE_LOCKS == 1 #if USE_SPIN_LOCKS #ifndef WIN32 /* Custom pthread-style spin locks on x86 and x64 for gcc */ struct pthread_mlock_t { volatile pthread_t threadid; volatile unsigned int c; volatile unsigned int l; }; #define MLOCK_T struct pthread_mlock_t #define CURRENT_THREAD pthread_self() #define SPINS_PER_YIELD 63 static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) { if(CURRENT_THREAD==sl->threadid) ++sl->c; else { int spins = 0; for (;;) { int ret; __asm__ __volatile__ ("lock cmpxchgl %2,(%1)" : "=a" (ret) : "r" (&sl->l), "r" (1), "a" (0)); if(!ret) { dl_assert(!sl->threadid); sl->threadid=CURRENT_THREAD; sl->c=1; break; } if ((++spins & SPINS_PER_YIELD) == 0) { #if defined (__SVR4) && defined (__sun) /* solaris */ thr_yield(); #else #ifdef linux sched_yield(); #else /* no-op yield on unknown systems */ ; #endif /* linux */ #endif /* solaris */ } } } return 0; } static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) { int ret; dl_assert(CURRENT_THREAD==sl->threadid); if (!--sl->c) { sl->threadid=0; __asm__ __volatile__ ("xchgl %2,(%1)" : "=r" (ret) : "r" (&sl->l), "0" (0)); } } static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) { int ret; __asm__ __volatile__ ("lock cmpxchgl %2,(%1)" : "=a" (ret) : "r" (&sl->l), "r" (1), "a" (0)); if(!ret){ dl_assert(!sl->threadid); sl->threadid=CURRENT_THREAD; sl->c=1; return 1; } return 0; } #define INITIAL_LOCK(sl) (memset((sl), 0, sizeof(MLOCK_T)), 0) #define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl) #define RELEASE_LOCK(sl) pthread_release_lock(sl) #define TRY_LOCK(sl) pthread_try_lock(sl) #define IS_LOCKED(sl) ((sl)->l) static MLOCK_T magic_init_mutex = {0, 0, 0 }; #if HAVE_MORECORE static MLOCK_T morecore_mutex = {0, 0, 0 }; #endif /* HAVE_MORECORE */ #else /* WIN32 */ /* Custom win32-style spin locks on x86 and x64 for MSC */ struct win32_mlock_t { volatile long threadid; volatile unsigned int c; long l; }; #define MLOCK_T struct win32_mlock_t #define CURRENT_THREAD GetCurrentThreadId() #define SPINS_PER_YIELD 63 static FORCEINLINE int win32_acquire_lock (MLOCK_T *sl) { long mythreadid=CURRENT_THREAD; if(mythreadid==sl->threadid) ++sl->c; else { int spins = 0; for (;;) { if (!interlockedexchange(&sl->l, 1)) { dl_assert(!sl->threadid); sl->threadid=mythreadid; sl->c=1; break; } if ((++spins & SPINS_PER_YIELD) == 0) SleepEx(0, FALSE); } } return 0; } static FORCEINLINE void win32_release_lock (MLOCK_T *sl) { dl_assert(CURRENT_THREAD==sl->threadid); if (!--sl->c) { sl->threadid=0; interlockedexchange (&sl->l, 0); } } static FORCEINLINE int win32_try_lock (MLOCK_T *sl) { if (!interlockedexchange(&sl->l, 1)){ dl_assert(!sl->threadid); sl->threadid=CURRENT_THREAD; sl->c=1; return 1; } return 0; } #define INITIAL_LOCK(sl) (memset(sl, 0, sizeof(MLOCK_T)), 0) #define ACQUIRE_LOCK(sl) win32_acquire_lock(sl) #define RELEASE_LOCK(sl) win32_release_lock(sl) #define TRY_LOCK(sl) win32_try_lock(sl) #define IS_LOCKED(sl) ((sl)->l) static MLOCK_T magic_init_mutex = {0, 0 }; #if HAVE_MORECORE static MLOCK_T morecore_mutex = {0, 0 }; #endif /* HAVE_MORECORE */ #endif /* WIN32 */ #else /* USE_SPIN_LOCKS */ #ifndef WIN32 /* pthreads-based locks */ struct pthread_mlock_t { volatile unsigned int c; pthread_mutex_t l; }; #define MLOCK_T struct pthread_mlock_t #define CURRENT_THREAD pthread_self() static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) { if(!pthread_mutex_lock(&(sl)->l)){ sl->c++; return 0; } return 1; } static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) { --sl->c; pthread_mutex_unlock(&(sl)->l); } static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) { if(!pthread_mutex_trylock(&(sl)->l)){ sl->c++; return 1; } return 0; } static FORCEINLINE int pthread_init_lock (MLOCK_T *sl) { pthread_mutexattr_t attr; sl->c=0; if(pthread_mutexattr_init(&attr)) return 1; if(pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1; if(pthread_mutex_init(&sl->l, &attr)) return 1; pthread_mutexattr_destroy(&attr); return 0; } static FORCEINLINE int pthread_islocked (MLOCK_T *sl) { if(!pthread_try_lock(sl)){ int ret = (sl->c != 0); pthread_mutex_unlock(sl); return ret; } return 0; } #define INITIAL_LOCK(sl) pthread_init_lock(sl) #define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl) #define RELEASE_LOCK(sl) pthread_release_lock(sl) #define TRY_LOCK(sl) pthread_try_lock(sl) #define IS_LOCKED(sl) pthread_islocked(sl) static MLOCK_T magic_init_mutex = {0, PTHREAD_MUTEX_INITIALIZER }; #if HAVE_MORECORE static MLOCK_T morecore_mutex = {0, PTHREAD_MUTEX_INITIALIZER }; #endif /* HAVE_MORECORE */ #else /* WIN32 */ /* Win32 critical sections */ #define MLOCK_T CRITICAL_SECTION #define CURRENT_THREAD GetCurrentThreadId() #define INITIAL_LOCK(s) (!InitializeCriticalSectionAndSpinCount((s), 4000) #define ACQUIRE_LOCK(s) ( (!((s))->DebugInfo ? INITIAL_LOCK((s)) : 0), !EnterCriticalSection((s)), 0) #define RELEASE_LOCK(s) ( LeaveCriticalSection((s)), 0 ) #define TRY_LOCK(s) ( TryEnterCriticalSection((s)) ) #define IS_LOCKED(s) ( (s)->LockCount >= 0 ) #define NULL_LOCK_INITIALIZER static MLOCK_T magic_init_mutex; #if HAVE_MORECORE static MLOCK_T morecore_mutex; #endif /* HAVE_MORECORE */ #endif /* WIN32 */ #endif /* USE_SPIN_LOCKS */ #endif /* USE_LOCKS == 1 */ /* ----------------------- User-defined locks ------------------------ */ #if USE_LOCKS > 1 /* Define your own lock implementation here */ /* #define INITIAL_LOCK(sl) ... */ /* #define ACQUIRE_LOCK(sl) ... */ /* #define RELEASE_LOCK(sl) ... */ /* #define TRY_LOCK(sl) ... */ /* #define IS_LOCKED(sl) ... */ /* #define NULL_LOCK_INITIALIZER ... */ static MLOCK_T magic_init_mutex = NULL_LOCK_INITIALIZER; #if HAVE_MORECORE static MLOCK_T morecore_mutex = NULL_LOCK_INITIALIZER; #endif /* HAVE_MORECORE */ #endif /* USE_LOCKS > 1 */ /* ----------------------- Lock-based state ------------------------ */ #if USE_LOCKS #define USE_LOCK_BIT (2U) #else /* USE_LOCKS */ #define USE_LOCK_BIT (0U) #define INITIAL_LOCK(l) #endif /* USE_LOCKS */ #if USE_LOCKS && HAVE_MORECORE #define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex); #define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex); #else /* USE_LOCKS && HAVE_MORECORE */ #define ACQUIRE_MORECORE_LOCK() #define RELEASE_MORECORE_LOCK() #endif /* USE_LOCKS && HAVE_MORECORE */ #if USE_LOCKS #define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex); #define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex); #else /* USE_LOCKS */ #define ACQUIRE_MAGIC_INIT_LOCK() #define RELEASE_MAGIC_INIT_LOCK() #endif /* USE_LOCKS */ /* ----------------------- Chunk representations ------------------------ */ /* (The following includes lightly edited explanations by Colin Plumb.) The malloc_chunk declaration below is misleading (but accurate and necessary). It declares a "view" into memory allowing access to necessary fields at known offsets from a given base. Chunks of memory are maintained using a `boundary tag' method as originally described by Knuth. (See the paper by Paul Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such techniques.) Sizes of free chunks are stored both in the front of each chunk and at the end. This makes consolidating fragmented chunks into bigger chunks fast. The head fields also hold bits representing whether chunks are free or in use. Here are some pictures to make it clearer. They are "exploded" to show that the state of a chunk can be thought of as extending from the high 31 bits of the head field of its header through the prev_foot and PINUSE_BIT bit of the following chunk header. A chunk that's in use looks like: chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Size of previous chunk (if P = 1) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| | Size of this chunk 1| +-+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- -+ | : +- size - sizeof(size_t) available payload bytes -+ : | chunk-> +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| | Size of next chunk (may or may not be in use) | +-+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ And if it's free, it looks like this: chunk-> +- -+ | User payload (must be in use, or we would have merged!) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| | Size of this chunk 0| +-+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Next pointer | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Prev pointer | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | : +- size - sizeof(struct chunk) unused bytes -+ : | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Size of this chunk | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| | Size of next chunk (must be in use, or we would have merged)| +-+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | : +- User payload -+ : | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| +-+ Note that since we always merge adjacent free chunks, the chunks adjacent to a free chunk must be in use. Given a pointer to a chunk (which can be derived trivially from the payload pointer) we can, in O(1) time, find out whether the adjacent chunks are free, and if so, unlink them from the lists that they are on and merge them with the current chunk. Chunks always begin on even word boundaries, so the mem portion (which is returned to the user) is also on an even word boundary, and thus at least double-word aligned. The P (PINUSE_BIT) bit, stored in the unused low-order bit of the chunk size (which is always a multiple of two words), is an in-use bit for the *previous* chunk. If that bit is *clear*, then the word before the current chunk size contains the previous chunk size, and can be used to find the front of the previous chunk. The very first chunk allocated always has this bit set, preventing access to non-existent (or non-owned) memory. If pinuse is set for any given chunk, then you CANNOT determine the size of the previous chunk, and might even get a memory addressing fault when trying to do so. The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of the chunk size redundantly records whether the current chunk is inuse. This redundancy enables usage checks within free and realloc, and reduces indirection when freeing and consolidating chunks. Each freshly allocated chunk must have both cinuse and pinuse set. That is, each allocated chunk borders either a previously allocated and still in-use chunk, or the base of its memory arena. This is ensured by making all allocations from the the `lowest' part of any found chunk. Further, no free chunk physically borders another one, so each free chunk is known to be preceded and followed by either inuse chunks or the ends of memory. Note that the `foot' of the current chunk is actually represented as the prev_foot of the NEXT chunk. This makes it easier to deal with alignments etc but can be very confusing when trying to extend or adapt this code. The exceptions to all this are 1. The special chunk `top' is the top-most available chunk (i.e., the one bordering the end of available memory). It is treated specially. Top is never included in any bin, is used only if no other chunk is available, and is released back to the system if it is very large (see M_TRIM_THRESHOLD). In effect, the top chunk is treated as larger (and thus less well fitting) than any other available chunk. The top chunk doesn't update its trailing size field since there is no next contiguous chunk that would have to index off it. However, space is still allocated for it (TOP_FOOT_SIZE) to enable separation or merging when space is extended. 3. Chunks allocated via mmap, which have the lowest-order bit (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set PINUSE_BIT in their head fields. Because they are allocated one-by-one, each must carry its own prev_foot field, which is also used to hold the offset this chunk has within its mmapped region, which is needed to preserve alignment. Each mmapped chunk is trailed by the first two fields of a fake next-chunk for sake of usage checks. */ struct malloc_chunk { size_t prev_foot; /* Size of previous chunk (if free). */ size_t head; /* Size and inuse bits. */ struct malloc_chunk* fd; /* double links -- used only if free. */ struct malloc_chunk* bk; }; typedef struct malloc_chunk mchunk; typedef struct malloc_chunk* mchunkptr; typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ typedef unsigned int bindex_t; /* Described below */ typedef unsigned int binmap_t; /* Described below */ typedef unsigned int flag_t; /* The type of various bit flag sets */ /* ------------------- Chunks sizes and alignments ----------------------- */ #define MCHUNK_SIZE (sizeof(mchunk)) #if FOOTERS #define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) #else /* FOOTERS */ #define CHUNK_OVERHEAD (SIZE_T_SIZE) #endif /* FOOTERS */ /* MMapped chunks need a second word of overhead ... */ #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) /* ... and additional padding for fake next-chunk at foot */ #define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) /* The smallest size we can malloc is an aligned minimal chunk */ #define MIN_CHUNK_SIZE\ ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) /* conversion from malloc headers to user pointers, and back */ #define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) /* chunk associated with aligned address A */ #define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) /* Bounds on request (not chunk) sizes. */ #define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) #define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) /* pad request bytes into a usable size */ #define pad_request(req) \ (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) /* pad request, checking for minimum (but not maximum) */ #define request2size(req) \ (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) /* ------------------ Operations on head and foot fields ----------------- */ /* The head field of a chunk is or'ed with PINUSE_BIT when previous adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in use. If the chunk was obtained with mmap, the prev_foot field has IS_MMAPPED_BIT set, otherwise holding the offset of the base of the mmapped region to the base of the chunk. FLAG4_BIT is not used by this malloc, but might be useful in extensions. */ #define PINUSE_BIT (SIZE_T_ONE) #define CINUSE_BIT (SIZE_T_TWO) #define FLAG4_BIT (SIZE_T_FOUR) #define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) #define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT) /* Head value for fenceposts */ #define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) /* extraction of fields from head words */ #define cinuse(p) ((p)->head & CINUSE_BIT) #define pinuse(p) ((p)->head & PINUSE_BIT) #define chunksize(p) ((p)->head & ~(FLAG_BITS)) #define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) #define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT) /* Treat space at ptr +/- offset as a chunk */ #define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) /* Ptr to next or previous physical malloc_chunk. */ #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS))) #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) /* extract next chunk's pinuse bit */ #define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) /* Get/set size at footer */ #define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) /* Set size, pinuse bit, and foot */ #define set_size_and_pinuse_of_free_chunk(p, s)\ ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) /* Set size, pinuse bit, foot, and clear next pinuse */ #define set_free_with_pinuse(p, s, n)\ (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) #define is_mmapped(p)\ (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT)) /* Get the internal overhead associated with chunk p */ #define overhead_for(p)\ (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) /* Return true if malloced space is not necessarily cleared */ #if MMAP_CLEARS #define calloc_must_clear(p) (!is_mmapped(p)) #else /* MMAP_CLEARS */ #define calloc_must_clear(p) (1) #endif /* MMAP_CLEARS */ /* ---------------------- Overlaid data structures ----------------------- */ /* When chunks are not in use, they are treated as nodes of either lists or trees. "Small" chunks are stored in circular doubly-linked lists, and look like this: chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Size of previous chunk | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ `head:' | Size of chunk, in bytes |P| mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Forward pointer to next chunk in list | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Back pointer to previous chunk in list | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unused space (may be 0 bytes long) . . . . | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ `foot:' | Size of chunk, in bytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Larger chunks are kept in a form of bitwise digital trees (aka tries) keyed on chunksizes. Because malloc_tree_chunks are only for free chunks greater than 256 bytes, their size doesn't impose any constraints on user chunk sizes. Each node looks like: chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Size of previous chunk | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ `head:' | Size of chunk, in bytes |P| mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Forward pointer to next chunk of same size | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Back pointer to previous chunk of same size | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Pointer to left child (child[0]) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Pointer to right child (child[1]) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Pointer to parent | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | bin index of this chunk | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unused space . . | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ `foot:' | Size of chunk, in bytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Each tree holding treenodes is a tree of unique chunk sizes. Chunks of the same size are arranged in a circularly-linked list, with only the oldest chunk (the next to be used, in our FIFO ordering) actually in the tree. (Tree members are distinguished by a non-null parent pointer.) If a chunk with the same size an an existing node is inserted, it is linked off the existing node using pointers that work in the same way as fd/bk pointers of small chunks. Each tree contains a power of 2 sized range of chunk sizes (the smallest is 0x100 <= x < 0x180), which is is divided in half at each tree level, with the chunks in the smaller half of the range (0x100 <= x < 0x140 for the top nose) in the left subtree and the larger half (0x140 <= x < 0x180) in the right subtree. This is, of course, done by inspecting individual bits. Using these rules, each node's left subtree contains all smaller sizes than its right subtree. However, the node at the root of each subtree has no particular ordering relationship to either. (The dividing line between the subtree sizes is based on trie relation.) If we remove the last chunk of a given size from the interior of the tree, we need to replace it with a leaf node. The tree ordering rules permit a node to be replaced by any leaf below it. The smallest chunk in a tree (a common operation in a best-fit allocator) can be found by walking a path to the leftmost leaf in the tree. Unlike a usual binary tree, where we follow left child pointers until we reach a null, here we follow the right child pointer any time the left one is null, until we reach a leaf with both child pointers null. The smallest chunk in the tree will be somewhere along that path. The worst case number of steps to add, find, or remove a node is bounded by the number of bits differentiating chunks within bins. Under current bin calculations, this ranges from 6 up to 21 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case is of course much better. */ struct malloc_tree_chunk { /* The first four fields must be compatible with malloc_chunk */ size_t prev_foot; size_t head; struct malloc_tree_chunk* fd; struct malloc_tree_chunk* bk; struct malloc_tree_chunk* child[2]; struct malloc_tree_chunk* parent; bindex_t index; }; typedef struct malloc_tree_chunk tchunk; typedef struct malloc_tree_chunk* tchunkptr; typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ /* A little helper macro for trees */ #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) /* ----------------------------- Segments -------------------------------- */ /* Each malloc space may include non-contiguous segments, held in a list headed by an embedded malloc_segment record representing the top-most space. Segments also include flags holding properties of the space. Large chunks that are directly allocated by mmap are not included in this list. They are instead independently created and destroyed without otherwise keeping track of them. Segment management mainly comes into play for spaces allocated by MMAP. Any call to MMAP might or might not return memory that is adjacent to an existing segment. MORECORE normally contiguously extends the current space, so this space is almost always adjacent, which is simpler and faster to deal with. (This is why MORECORE is used preferentially to MMAP when both are available -- see sys_alloc.) When allocating using MMAP, we don't use any of the hinting mechanisms (inconsistently) supported in various implementations of unix mmap, or distinguish reserving from committing memory. Instead, we just ask for space, and exploit contiguity when we get it. It is probably possible to do better than this on some systems, but no general scheme seems to be significantly better. Management entails a simpler variant of the consolidation scheme used for chunks to reduce fragmentation -- new adjacent memory is normally prepended or appended to an existing segment. However, there are limitations compared to chunk consolidation that mostly reflect the fact that segment processing is relatively infrequent (occurring only when getting memory from system) and that we don't expect to have huge numbers of segments: * Segments are not indexed, so traversal requires linear scans. (It would be possible to index these, but is not worth the extra overhead and complexity for most programs on most platforms.) * New segments are only appended to old ones when holding top-most memory; if they cannot be prepended to others, they are held in different segments. Except for the top-most segment of an mstate, each segment record is kept at the tail of its segment. Segments are added by pushing segment records onto the list headed by &mstate.seg for the containing mstate. Segment flags control allocation/merge/deallocation policies: * If EXTERN_BIT set, then we did not allocate this segment, and so should not try to deallocate or merge with others. (This currently holds only for the initial segment passed into create_mspace_with_base.) * If IS_MMAPPED_BIT set, the segment may be merged with other surrounding mmapped segments and trimmed/de-allocated using munmap. * If neither bit is set, then the segment was obtained using MORECORE so can be merged with surrounding MORECORE'd segments and deallocated/trimmed using MORECORE with negative arguments. */ struct malloc_segment { char* base; /* base address */ size_t size; /* allocated size */ struct malloc_segment* next; /* ptr to next segment */ flag_t sflags; /* mmap and extern flag */ }; #define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT) #define is_extern_segment(S) ((S)->sflags & EXTERN_BIT) typedef struct malloc_segment msegment; typedef struct malloc_segment* msegmentptr; /* ---------------------------- malloc_state ----------------------------- */ /* A malloc_state holds all of the bookkeeping for a space. The main fields are: Top The topmost chunk of the currently active segment. Its size is cached in topsize. The actual size of topmost space is topsize+TOP_FOOT_SIZE, which includes space reserved for adding fenceposts and segment records if necessary when getting more space from the system. The size at which to autotrim top is cached from mparams in trim_check, except that it is disabled if an autotrim fails. Designated victim (dv) This is the preferred chunk for servicing small requests that don't have exact fits. It is normally the chunk split off most recently to service another small request. Its size is cached in dvsize. The link fields of this chunk are not maintained since it is not kept in a bin. SmallBins An array of bin headers for free chunks. These bins hold chunks with sizes less than MIN_LARGE_SIZE bytes. Each bin contains chunks of all the same size, spaced 8 bytes apart. To simplify use in double-linked lists, each bin header acts as a malloc_chunk pointing to the real first node, if it exists (else pointing to itself). This avoids special-casing for headers. But to avoid waste, we allocate only the fd/bk pointers of bins, and then use repositioning tricks to treat these as the fields of a chunk. TreeBins Treebins are pointers to the roots of trees holding a range of sizes. There are 2 equally spaced treebins for each power of two from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything larger. Bin maps There is one bit map for small bins ("smallmap") and one for treebins ("treemap). Each bin sets its bit when non-empty, and clears the bit when empty. Bit operations are then used to avoid bin-by-bin searching -- nearly all "search" is done without ever looking at bins that won't be selected. The bit maps conservatively use 32 bits per map word, even if on 64bit system. For a good description of some of the bit-based techniques used here, see Henry S. Warren Jr's book "Hacker's Delight" (and supplement at http://hackersdelight.org/). Many of these are intended to reduce the branchiness of paths through malloc etc, as well as to reduce the number of memory locations read or written. Segments A list of segments headed by an embedded malloc_segment record representing the initial space. Address check support The least_addr field is the least address ever obtained from MORECORE or MMAP. Attempted frees and reallocs of any address less than this are trapped (unless INSECURE is defined). Magic tag A cross-check field that should always hold same value as mparams.magic. Flags Bits recording whether to use MMAP, locks, or contiguous MORECORE Statistics Each space keeps track of current and maximum system memory obtained via MORECORE or MMAP. Trim support Fields holding the amount of unused topmost memory that should trigger timming, and a counter to force periodic scanning to release unused non-topmost segments. Locking If USE_LOCKS is defined, the "mutex" lock is acquired and released around every public call using this mspace. Extension support A void* pointer and a size_t field that can be used to help implement extensions to this malloc. */ /* Bin types, widths and sizes */ #define NSMALLBINS (32U) #define NTREEBINS (32U) #define SMALLBIN_SHIFT (3U) #define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) #define TREEBIN_SHIFT (8U) #define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) #define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) struct malloc_state { binmap_t smallmap; binmap_t treemap; size_t dvsize; size_t topsize; char* least_addr; mchunkptr dv; mchunkptr top; size_t trim_check; size_t release_checks; size_t magic; mchunkptr smallbins[(NSMALLBINS+1)*2]; tbinptr treebins[NTREEBINS]; size_t footprint; size_t max_footprint; flag_t mflags; #if USE_LOCKS MLOCK_T mutex; /* locate lock among fields that rarely change */ #endif /* USE_LOCKS */ msegment seg; void* extp; /* Unused but available for extensions */ size_t exts; }; typedef struct malloc_state* mstate; /* ------------- Global malloc_state and malloc_params ------------------- */ /* malloc_params holds global properties, including those that can be dynamically set using mallopt. There is a single instance, mparams, initialized in init_mparams. */ struct malloc_params { size_t magic; size_t page_size; size_t granularity; size_t mmap_threshold; size_t trim_threshold; flag_t default_mflags; }; static struct malloc_params mparams; #if !ONLY_MSPACES /* The global malloc_state used for all non-"mspace" calls */ static struct malloc_state _gm_; #define gm (&_gm_) #define is_global(M) ((M) == &_gm_) #endif /* !ONLY_MSPACES */ #define is_initialized(M) ((M)->top != 0) /* -------------------------- system alloc setup ------------------------- */ /* Operations on mflags */ #define use_lock(M) ((M)->mflags & USE_LOCK_BIT) #define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) #define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) #define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) #define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) #define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) #define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) #define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) #define set_lock(M,L)\ ((M)->mflags = (L)?\ ((M)->mflags | USE_LOCK_BIT) :\ ((M)->mflags & ~USE_LOCK_BIT)) /* page-align a size */ #define page_align(S)\ (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE)) /* granularity-align a size */ #define granularity_align(S)\ (((S) + (mparams.granularity - SIZE_T_ONE))\ & ~(mparams.granularity - SIZE_T_ONE)) /* For mmap, use granularity alignment on windows, else page-align */ #ifdef WIN32 #define mmap_align(S) granularity_align(S) #else #define mmap_align(S) page_align(S) #endif #define is_page_aligned(S)\ (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) #define is_granularity_aligned(S)\ (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) /* True if segment S holds address A */ #define segment_holds(S, A)\ ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) /* Return segment holding given address */ static msegmentptr segment_holding(mstate m, char* addr) { msegmentptr sp = &m->seg; for (;;) { if (addr >= sp->base && addr < sp->base + sp->size) return sp; if ((sp = sp->next) == 0) return 0; } } /* Return true if segment contains a segment link */ static int has_segment_link(mstate m, msegmentptr ss) { msegmentptr sp = &m->seg; for (;;) { if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) return 1; if ((sp = sp->next) == 0) return 0; } } #ifndef MORECORE_CANNOT_TRIM #define should_trim(M,s) ((s) > (M)->trim_check) #else /* MORECORE_CANNOT_TRIM */ #define should_trim(M,s) (0) #endif /* MORECORE_CANNOT_TRIM */ /* TOP_FOOT_SIZE is padding at the end of a segment, including space that may be needed to place segment records and fenceposts when new noncontiguous segments are added. */ #define TOP_FOOT_SIZE\ (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) /* ------------------------------- Hooks -------------------------------- */ /* PREACTION should be defined to return 0 on success, and nonzero on failure. If you are not using locking, you can redefine these to do anything you like. */ #if USE_LOCKS /* Ensure locks are initialized */ #define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams()) #define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } #else /* USE_LOCKS */ #ifndef PREACTION #define PREACTION(M) (0) #endif /* PREACTION */ #ifndef POSTACTION #define POSTACTION(M) #endif /* POSTACTION */ #endif /* USE_LOCKS */ /* CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. USAGE_ERROR_ACTION is triggered on detected bad frees and reallocs. The argument p is an address that might have triggered the fault. It is ignored by the two predefined actions, but might be useful in custom actions that try to help diagnose errors. */ #if PROCEED_ON_ERROR /* A count of the number of corruption errors causing resets */ int malloc_corruption_error_count; /* default corruption action */ static void reset_on_error(mstate m); #define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) #define USAGE_ERROR_ACTION(m, p) #else /* PROCEED_ON_ERROR */ #ifndef CORRUPTION_ERROR_ACTION #define CORRUPTION_ERROR_ACTION(m) ABORT #endif /* CORRUPTION_ERROR_ACTION */ #ifndef USAGE_ERROR_ACTION #define USAGE_ERROR_ACTION(m,p) ABORT #endif /* USAGE_ERROR_ACTION */ #endif /* PROCEED_ON_ERROR */ /* -------------------------- Debugging setup ---------------------------- */ #if ! DL_DEBUG #define check_free_chunk(M,P) #define check_inuse_chunk(M,P) #define check_malloced_chunk(M,P,N) #define check_mmapped_chunk(M,P) #define check_malloc_state(M) #define check_top_chunk(M,P) #else /* DL_DEBUG */ #define check_free_chunk(M,P) do_check_free_chunk(M,P) #define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) #define check_top_chunk(M,P) do_check_top_chunk(M,P) #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) #define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) #define check_malloc_state(M) do_check_malloc_state(M) static void do_check_any_chunk(mstate m, mchunkptr p); static void do_check_top_chunk(mstate m, mchunkptr p); static void do_check_mmapped_chunk(mstate m, mchunkptr p); static void do_check_inuse_chunk(mstate m, mchunkptr p); static void do_check_free_chunk(mstate m, mchunkptr p); static void do_check_malloced_chunk(mstate m, void* mem, size_t s); static void do_check_tree(mstate m, tchunkptr t); static void do_check_treebin(mstate m, bindex_t i); static void do_check_smallbin(mstate m, bindex_t i); static void do_check_malloc_state(mstate m); static int bin_find(mstate m, mchunkptr x); static size_t traverse_and_check(mstate m); #endif /* DL_DEBUG */ /* ---------------------------- Indexing Bins ---------------------------- */ #define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) #define small_index(s) ((s) >> SMALLBIN_SHIFT) #define small_index2size(i) ((i) << SMALLBIN_SHIFT) #define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) /* addressing by index. See above about smallbin repositioning */ #define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) #define treebin_at(M,i) (&((M)->treebins[i])) /* assign tree index for size S to variable I */ #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) #define compute_tree_index(S, I)\ {\ unsigned int X = S >> TREEBIN_SHIFT;\ if (X == 0)\ I = 0;\ else if (X > 0xFFFF)\ I = NTREEBINS-1;\ else {\ unsigned int K;\ __asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "g" (X));\ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ }\ } #elif defined(_MSC_VER) && _MSC_VER>=1300 #define compute_tree_index(S, I)\ {\ size_t X = S >> TREEBIN_SHIFT;\ if (X == 0)\ I = 0;\ else if (X > 0xFFFF)\ I = NTREEBINS-1;\ else {\ unsigned int K;\ _BitScanReverse((DWORD *) &K, X);\ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ }\ } #else /* GNUC */ #define compute_tree_index(S, I)\ {\ size_t X = S >> TREEBIN_SHIFT;\ if (X == 0)\ I = 0;\ else if (X > 0xFFFF)\ I = NTREEBINS-1;\ else {\ unsigned int Y = (unsigned int)X;\ unsigned int N = ((Y - 0x100) >> 16) & 8;\ unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ N += K;\ N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ K = 14 - N + ((Y <<= K) >> 15);\ I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ }\ } #endif /* GNUC */ /* Bit representing maximum resolved size in a treebin at i */ #define bit_for_tree_index(i) \ (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) /* Shift placing maximum resolved bit in a treebin at i as sign bit */ #define leftshift_for_tree_index(i) \ ((i == NTREEBINS-1)? 0 : \ ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) /* The size of the smallest chunk held in bin with index i */ #define minsize_for_tree_index(i) \ ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) /* ------------------------ Operations on bin maps ----------------------- */ /* bit corresponding to given index */ #define idx2bit(i) ((binmap_t)(1) << (i)) /* Mark/Clear bits with given index */ #define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) #define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) #define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) #define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) #define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) #define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) /* index corresponding to given bit */ #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) #define compute_bit2idx(X, I)\ {\ unsigned int J;\ __asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "g" (X));\ I = (bindex_t)J;\ } #elif defined(_MSC_VER) && _MSC_VER>=1300 #define compute_bit2idx(X, I)\ {\ unsigned int J;\ _BitScanForward((DWORD *) &J, X);\ I = (bindex_t)J;\ } #else /* GNUC */ #if USE_BUILTIN_FFS #define compute_bit2idx(X, I) I = ffs(X)-1 #else /* USE_BUILTIN_FFS */ #define compute_bit2idx(X, I)\ {\ unsigned int Y = X - 1;\ unsigned int K = Y >> (16-4) & 16;\ unsigned int N = K; Y >>= K;\ N += K = Y >> (8-3) & 8; Y >>= K;\ N += K = Y >> (4-2) & 4; Y >>= K;\ N += K = Y >> (2-1) & 2; Y >>= K;\ N += K = Y >> (1-0) & 1; Y >>= K;\ I = (bindex_t)(N + Y);\ } #endif /* USE_BUILTIN_FFS */ #endif /* GNUC */ /* isolate the least set bit of a bitmap */ #define least_bit(x) ((x) & -(x)) /* mask with all bits to left of least bit of x on */ #define left_bits(x) ((x<<1) | -(x<<1)) /* mask with all bits to left of or equal to least bit of x on */ #define same_or_left_bits(x) ((x) | -(x)) /* ----------------------- Runtime Check Support ------------------------- */ /* For security, the main invariant is that malloc/free/etc never writes to a static address other than malloc_state, unless static malloc_state itself has been corrupted, which cannot occur via malloc (because of these checks). In essence this means that we believe all pointers, sizes, maps etc held in malloc_state, but check all of those linked or offsetted from other embedded data structures. These checks are interspersed with main code in a way that tends to minimize their run-time cost. When FOOTERS is defined, in addition to range checking, we also verify footer fields of inuse chunks, which can be used guarantee that the mstate controlling malloc/free is intact. This is a streamlined version of the approach described by William Robertson et al in "Run-time Detection of Heap-based Overflows" LISA'03 http://www.usenix.org/events/lisa03/tech/robertson.html The footer of an inuse chunk holds the xor of its mstate and a random seed, that is checked upon calls to free() and realloc(). This is (probablistically) unguessable from outside the program, but can be computed by any code successfully malloc'ing any chunk, so does not itself provide protection against code that has already broken security through some other means. Unlike Robertson et al, we always dynamically check addresses of all offset chunks (previous, next, etc). This turns out to be cheaper than relying on hashes. */ #if !INSECURE /* Check if address a is at least as high as any from MORECORE or MMAP */ #define ok_address(M, a) ((char*)(a) >= (M)->least_addr) /* Check if address of next chunk n is higher than base chunk p */ #define ok_next(p, n) ((char*)(p) < (char*)(n)) /* Check if p has its cinuse bit on */ #define ok_cinuse(p) cinuse(p) /* Check if p has its pinuse bit on */ #define ok_pinuse(p) pinuse(p) #else /* !INSECURE */ #define ok_address(M, a) (1) #define ok_next(b, n) (1) #define ok_cinuse(p) (1) #define ok_pinuse(p) (1) #endif /* !INSECURE */ #if (FOOTERS && !INSECURE) /* Check if (alleged) mstate m has expected magic field */ /* Modified by sasha: also check that address is within memheap */ #define ok_magic(M) ((char *)(M) >= (char *)gm->least_addr && (M)->magic == mparams.magic) #else /* (FOOTERS && !INSECURE) */ #define ok_magic(M) (1) #endif /* (FOOTERS && !INSECURE) */ /* In gcc, use __builtin_expect to minimize impact of checks */ #if !INSECURE #if defined(__GNUC__) && __GNUC__ >= 3 #define RTCHECK(e) __builtin_expect(e, 1) #else /* GNUC */ #define RTCHECK(e) (e) #endif /* GNUC */ #else /* !INSECURE */ #define RTCHECK(e) (1) #endif /* !INSECURE */ /* macros to set up inuse chunks with or without footers */ #if !FOOTERS #define mark_inuse_foot(M,p,s) /* Set cinuse bit and pinuse bit of next chunk */ #define set_inuse(M,p,s)\ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) /* Set cinuse and pinuse of this chunk and pinuse of next chunk */ #define set_inuse_and_pinuse(M,p,s)\ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) /* Set size, cinuse and pinuse bit of this chunk */ #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) #else /* FOOTERS */ /* Set foot of inuse chunk to be xor of mstate and seed */ #define mark_inuse_foot(M,p,s)\ (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) #define get_mstate_for(p)\ ((mstate)(((mchunkptr)((char*)(p) +\ (chunksize(p))))->prev_foot ^ mparams.magic)) #define set_inuse(M,p,s)\ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ mark_inuse_foot(M,p,s)) #define set_inuse_and_pinuse(M,p,s)\ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ mark_inuse_foot(M,p,s)) #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ mark_inuse_foot(M, p, s)) #endif /* !FOOTERS */ /* ---------------------------- setting mparams -------------------------- */ /* Initialize mparams */ static int init_mparams(void) { if (mparams.page_size == 0) { size_t s; mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; #if MORECORE_CONTIGUOUS mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; #else /* MORECORE_CONTIGUOUS */ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; #endif /* MORECORE_CONTIGUOUS */ #if (FOOTERS && !INSECURE) { #if USE_DEV_RANDOM int fd; unsigned char buf[sizeof(size_t)]; /* Try to use /dev/urandom, else fall back on using time */ if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && read(fd, buf, sizeof(buf)) == sizeof(buf)) { s = *((size_t *) buf); close(fd); } else #endif /* USE_DEV_RANDOM */ s = (size_t)(time(0) ^ (size_t)0x55555555U); s |= (size_t)8U; /* ensure nonzero */ s &= ~(size_t)7U; /* improve chances of fault for bad values */ } #else /* (FOOTERS && !INSECURE) */ s = (size_t)0x58585858U; #endif /* (FOOTERS && !INSECURE) */ ACQUIRE_MAGIC_INIT_LOCK(); if (mparams.magic == 0) { mparams.magic = s; #if !ONLY_MSPACES /* Set up lock for main malloc area */ INITIAL_LOCK(&gm->mutex); gm->mflags = mparams.default_mflags; #endif } RELEASE_MAGIC_INIT_LOCK(); #ifndef WIN32 mparams.page_size = malloc_getpagesize; mparams.granularity = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : mparams.page_size); #else /* WIN32 */ { SYSTEM_INFO system_info; GetSystemInfo(&system_info); mparams.page_size = system_info.dwPageSize; mparams.granularity = system_info.dwAllocationGranularity; } #endif /* WIN32 */ /* Sanity-check configuration: size_t must be unsigned and as wide as pointer type. ints must be at least 4 bytes. alignment must be at least 8. Alignment, min chunk size, and page size must all be powers of 2. */ if ((sizeof(size_t) != sizeof(char*)) || (MAX_SIZE_T < MIN_CHUNK_SIZE) || (sizeof(int) < 4) || (MALLOC_ALIGNMENT < (size_t)8U) || ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) || ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0)) ABORT; } return 0; } /* support for mallopt */ static int change_mparam(int param_number, int value) { size_t val = (size_t)value; init_mparams(); switch(param_number) { case M_TRIM_THRESHOLD: mparams.trim_threshold = val; return 1; case M_GRANULARITY: if (val >= mparams.page_size && ((val & (val-1)) == 0)) { mparams.granularity = val; return 1; } else return 0; case M_MMAP_THRESHOLD: mparams.mmap_threshold = val; return 1; default: return 0; } } #if DL_DEBUG /* ------------------------- Debugging Support --------------------------- */ /* Check properties of any chunk, whether free, inuse, mmapped etc */ static void do_check_any_chunk(mstate m, mchunkptr p) { dl_assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); dl_assert(ok_address(m, p)); } /* Check properties of top chunk */ static void do_check_top_chunk(mstate m, mchunkptr p) { msegmentptr sp = segment_holding(m, (char*)p); size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */ dl_assert(sp != 0); dl_assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); dl_assert(ok_address(m, p)); dl_assert(sz == m->topsize); dl_assert(sz > 0); dl_assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); dl_assert(pinuse(p)); dl_assert(!pinuse(chunk_plus_offset(p, sz))); } /* Check properties of (inuse) mmapped chunks */ static void do_check_mmapped_chunk(mstate m, mchunkptr p) { size_t sz = chunksize(p); size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD); dl_assert(is_mmapped(p)); dl_assert(use_mmap(m)); dl_assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); dl_assert(ok_address(m, p)); dl_assert(!is_small(sz)); dl_assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); dl_assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); dl_assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); } /* Check properties of inuse chunks */ static void do_check_inuse_chunk(mstate m, mchunkptr p) { do_check_any_chunk(m, p); dl_assert(cinuse(p)); dl_assert(next_pinuse(p)); /* If not pinuse and not mmapped, previous chunk has OK offset */ dl_assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); if (is_mmapped(p)) do_check_mmapped_chunk(m, p); } /* Check properties of free chunks */ static void do_check_free_chunk(mstate m, mchunkptr p) { size_t sz = chunksize(p); mchunkptr next = chunk_plus_offset(p, sz); do_check_any_chunk(m, p); dl_assert(!cinuse(p)); dl_assert(!next_pinuse(p)); assert (!is_mmapped(p)); if (p != m->dv && p != m->top) { if (sz >= MIN_CHUNK_SIZE) { dl_assert((sz & CHUNK_ALIGN_MASK) == 0); dl_assert(is_aligned(chunk2mem(p))); dl_assert(next->prev_foot == sz); dl_assert(pinuse(p)); assert (next == m->top || cinuse(next)); dl_assert(p->fd->bk == p); dl_assert(p->bk->fd == p); } else /* markers are always of size SIZE_T_SIZE */ dl_assert(sz == SIZE_T_SIZE); } } /* Check properties of malloced chunks at the point they are malloced */ static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { if (mem != 0) { mchunkptr p = mem2chunk(mem); size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT); do_check_inuse_chunk(m, p); dl_assert((sz & CHUNK_ALIGN_MASK) == 0); dl_assert(sz >= MIN_CHUNK_SIZE); dl_assert(sz >= s); /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ dl_assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); } } /* Check a tree and its subtrees. */ static void do_check_tree(mstate m, tchunkptr t) { tchunkptr head = 0; tchunkptr u = t; bindex_t tindex = t->index; size_t tsize = chunksize(t); bindex_t idx; compute_tree_index(tsize, idx); dl_assert(tindex == idx); dl_assert(tsize >= MIN_LARGE_SIZE); dl_assert(tsize >= minsize_for_tree_index(idx)); dl_assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); do { /* traverse through chain of same-sized nodes */ do_check_any_chunk(m, ((mchunkptr)u)); dl_assert(u->index == tindex); dl_assert(chunksize(u) == tsize); dl_assert(!cinuse(u)); dl_assert(!next_pinuse(u)); dl_assert(u->fd->bk == u); dl_assert(u->bk->fd == u); if (u->parent == 0) { dl_assert(u->child[0] == 0); dl_assert(u->child[1] == 0); } else { dl_assert(head == 0); /* only one node on chain has parent */ head = u; dl_assert(u->parent != u); assert (u->parent->child[0] == u || u->parent->child[1] == u || *((tbinptr*)(u->parent)) == u); if (u->child[0] != 0) { dl_assert(u->child[0]->parent == u); dl_assert(u->child[0] != u); do_check_tree(m, u->child[0]); } if (u->child[1] != 0) { dl_assert(u->child[1]->parent == u); dl_assert(u->child[1] != u); do_check_tree(m, u->child[1]); } if (u->child[0] != 0 && u->child[1] != 0) { dl_assert(chunksize(u->child[0]) < chunksize(u->child[1])); } } u = u->fd; } while (u != t); dl_assert(head != 0); } /* Check all the chunks in a treebin. */ static void do_check_treebin(mstate m, bindex_t i) { tbinptr* tb = treebin_at(m, i); tchunkptr t = *tb; int empty = (m->treemap & (1U << i)) == 0; if (t == 0) dl_assert(empty); if (!empty) do_check_tree(m, t); } /* Check all the chunks in a smallbin. */ static void do_check_smallbin(mstate m, bindex_t i) { sbinptr b = smallbin_at(m, i); mchunkptr p = b->bk; unsigned int empty = (m->smallmap & (1U << i)) == 0; if (p == b) dl_assert(empty); if (!empty) { for (; p != b; p = p->bk) { size_t size = chunksize(p); mchunkptr q; /* each chunk claims to be free */ do_check_free_chunk(m, p); /* chunk belongs in bin */ dl_assert(small_index(size) == i); dl_assert(p->bk == b || chunksize(p->bk) == chunksize(p)); /* chunk is followed by an inuse chunk */ q = next_chunk(p); if (q->head != FENCEPOST_HEAD) do_check_inuse_chunk(m, q); } } } /* Find x in a bin. Used in other check functions. */ static int bin_find(mstate m, mchunkptr x) { size_t size = chunksize(x); if (is_small(size)) { bindex_t sidx = small_index(size); sbinptr b = smallbin_at(m, sidx); if (smallmap_is_marked(m, sidx)) { mchunkptr p = b; do { if (p == x) return 1; } while ((p = p->fd) != b); } } else { bindex_t tidx; compute_tree_index(size, tidx); if (treemap_is_marked(m, tidx)) { tchunkptr t = *treebin_at(m, tidx); size_t sizebits = size << leftshift_for_tree_index(tidx); while (t != 0 && chunksize(t) != size) { t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; sizebits <<= 1; } if (t != 0) { tchunkptr u = t; do { if (u == (tchunkptr)x) return 1; } while ((u = u->fd) != t); } } } return 0; } /* Traverse each chunk and check it; return total */ static size_t traverse_and_check(mstate m) { size_t sum = 0; if (is_initialized(m)) { msegmentptr s = &m->seg; sum += m->topsize + TOP_FOOT_SIZE; while (s != 0) { mchunkptr q = align_as_chunk(s->base); mchunkptr lastq = 0; dl_assert(pinuse(q)); while (segment_holds(s, q) && q != m->top && q->head != FENCEPOST_HEAD) { sum += chunksize(q); if (cinuse(q)) { dl_assert(!bin_find(m, q)); do_check_inuse_chunk(m, q); } else { dl_assert(q == m->dv || bin_find(m, q)); dl_assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */ do_check_free_chunk(m, q); } lastq = q; q = next_chunk(q); } s = s->next; } } return sum; } /* Check all properties of malloc_state. */ static void do_check_malloc_state(mstate m) { bindex_t i; size_t total; /* check bins */ for (i = 0; i < NSMALLBINS; ++i) do_check_smallbin(m, i); for (i = 0; i < NTREEBINS; ++i) do_check_treebin(m, i); if (m->dvsize != 0) { /* check dv chunk */ do_check_any_chunk(m, m->dv); dl_assert(m->dvsize == chunksize(m->dv)); dl_assert(m->dvsize >= MIN_CHUNK_SIZE); dl_assert(bin_find(m, m->dv) == 0); } if (m->top != 0) { /* check top chunk */ do_check_top_chunk(m, m->top); /*dl_assert(m->topsize == chunksize(m->top)); redundant */ dl_assert(m->topsize > 0); dl_assert(bin_find(m, m->top) == 0); } total = traverse_and_check(m); dl_assert(total <= m->footprint); dl_assert(m->footprint <= m->max_footprint); } #endif /* DL_DEBUG */ /* ----------------------------- statistics ------------------------------ */ #if !NO_MALLINFO static struct mallinfo internal_mallinfo(mstate m) { struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; if (!PREACTION(m)) { check_malloc_state(m); if (is_initialized(m)) { size_t nfree = SIZE_T_ONE; /* top always free */ size_t mfree = m->topsize + TOP_FOOT_SIZE; size_t sum = mfree; msegmentptr s = &m->seg; while (s != 0) { mchunkptr q = align_as_chunk(s->base); while (segment_holds(s, q) && q != m->top && q->head != FENCEPOST_HEAD) { size_t sz = chunksize(q); sum += sz; if (!cinuse(q)) { mfree += sz; ++nfree; } q = next_chunk(q); } s = s->next; } nm.arena = sum; nm.ordblks = nfree; nm.hblkhd = m->footprint - sum; nm.usmblks = m->max_footprint; nm.uordblks = m->footprint - mfree; nm.fordblks = mfree; nm.keepcost = m->topsize; } POSTACTION(m); } return nm; } #endif /* !NO_MALLINFO */ static void internal_malloc_stats(mstate m) { if (!PREACTION(m)) { size_t maxfp = 0; size_t fp = 0; size_t used = 0; check_malloc_state(m); if (is_initialized(m)) { msegmentptr s = &m->seg; maxfp = m->max_footprint; fp = m->footprint; used = fp - (m->topsize + TOP_FOOT_SIZE); while (s != 0) { mchunkptr q = align_as_chunk(s->base); while (segment_holds(s, q) && q != m->top && q->head != FENCEPOST_HEAD) { if (!cinuse(q)) used -= chunksize(q); q = next_chunk(q); } s = s->next; } } fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp)); fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used)); POSTACTION(m); } } /* ----------------------- Operations on smallbins ----------------------- */ /* Various forms of linking and unlinking are defined as macros. Even the ones for trees, which are very long but have very short typical paths. This is ugly but reduces reliance on inlining support of compilers. */ /* Link a free chunk into a smallbin */ #define insert_small_chunk(M, P, S) {\ bindex_t IDX = small_index(S);\ mchunkptr B = smallbin_at(M, IDX);\ mchunkptr F = B;\ dl_assert(S >= MIN_CHUNK_SIZE);\ if (!smallmap_is_marked(M, IDX))\ mark_smallmap(M, IDX);\ else if (RTCHECK(ok_address(M, B->fd)))\ F = B->fd;\ else {\ CORRUPTION_ERROR_ACTION(M);\ }\ B->fd = P;\ F->bk = P;\ P->fd = F;\ P->bk = B;\ } /* Unlink a chunk from a smallbin */ #define unlink_small_chunk(M, P, S) {\ mchunkptr F = P->fd;\ mchunkptr B = P->bk;\ bindex_t IDX = small_index(S);\ dl_assert(P != B);\ dl_assert(P != F);\ dl_assert(chunksize(P) == small_index2size(IDX));\ if (F == B)\ clear_smallmap(M, IDX);\ else if (RTCHECK((F == smallbin_at(M,IDX) || ok_address(M, F)) &&\ (B == smallbin_at(M,IDX) || ok_address(M, B)))) {\ F->bk = B;\ B->fd = F;\ }\ else {\ CORRUPTION_ERROR_ACTION(M);\ }\ } /* Unlink the first chunk from a smallbin */ #define unlink_first_small_chunk(M, B, P, IDX) {\ mchunkptr F = P->fd;\ dl_assert(P != B);\ dl_assert(P != F);\ dl_assert(chunksize(P) == small_index2size(IDX));\ if (B == F)\ clear_smallmap(M, IDX);\ else if (RTCHECK(ok_address(M, F))) {\ B->fd = F;\ F->bk = B;\ }\ else {\ CORRUPTION_ERROR_ACTION(M);\ }\ } /* Replace dv node, binning the old one */ /* Used only when dvsize known to be small */ #define replace_dv(M, P, S) {\ size_t DVS = M->dvsize;\ if (DVS != 0) {\ mchunkptr DV = M->dv;\ dl_assert(is_small(DVS));\ insert_small_chunk(M, DV, DVS);\ }\ M->dvsize = S;\ M->dv = P;\ } /* ------------------------- Operations on trees ------------------------- */ /* Insert chunk into tree */ #define insert_large_chunk(M, X, S) {\ tbinptr* H;\ bindex_t IDX;\ compute_tree_index(S, IDX);\ H = treebin_at(M, IDX);\ X->index = IDX;\ X->child[0] = X->child[1] = 0;\ if (!treemap_is_marked(M, IDX)) {\ mark_treemap(M, IDX);\ *H = X;\ X->parent = (tchunkptr)H;\ X->fd = X->bk = X;\ }\ else {\ tchunkptr T = *H;\ size_t K = S << leftshift_for_tree_index(IDX);\ for (;;) {\ if (chunksize(T) != S) {\ tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ K <<= 1;\ if (*C != 0)\ T = *C;\ else if (RTCHECK(ok_address(M, C))) {\ *C = X;\ X->parent = T;\ X->fd = X->bk = X;\ break;\ }\ else {\ CORRUPTION_ERROR_ACTION(M);\ break;\ }\ }\ else {\ tchunkptr F = T->fd;\ if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ T->fd = F->bk = X;\ X->fd = F;\ X->bk = T;\ X->parent = 0;\ break;\ }\ else {\ CORRUPTION_ERROR_ACTION(M);\ break;\ }\ }\ }\ }\ } /* Unlink steps: 1. If x is a chained node, unlink it from its same-sized fd/bk links and choose its bk node as its replacement. 2. If x was the last node of its size, but not a leaf node, it must be replaced with a leaf node (not merely one with an open left or right), to make sure that lefts and rights of descendents correspond properly to bit masks. We use the rightmost descendent of x. We could use any other leaf, but this is easy to locate and tends to counteract removal of leftmosts elsewhere, and so keeps paths shorter than minimally guaranteed. This doesn't loop much because on average a node in a tree is near the bottom. 3. If x is the base of a chain (i.e., has parent links) relink x's parent and children to x's replacement (or null if none). */ #define unlink_large_chunk(M, X) {\ tchunkptr XP = X->parent;\ tchunkptr R;\ if (X->bk != X) {\ tchunkptr F = X->fd;\ R = X->bk;\ if (RTCHECK(ok_address(M, F))) {\ F->bk = R;\ R->fd = F;\ }\ else {\ CORRUPTION_ERROR_ACTION(M);\ }\ }\ else {\ tchunkptr* RP;\ if (((R = *(RP = &(X->child[1]))) != 0) ||\ ((R = *(RP = &(X->child[0]))) != 0)) {\ tchunkptr* CP;\ while ((*(CP = &(R->child[1])) != 0) ||\ (*(CP = &(R->child[0])) != 0)) {\ R = *(RP = CP);\ }\ if (RTCHECK(ok_address(M, RP)))\ *RP = 0;\ else {\ CORRUPTION_ERROR_ACTION(M);\ }\ }\ }\ if (XP != 0) {\ tbinptr* H = treebin_at(M, X->index);\ if (X == *H) {\ if ((*H = R) == 0) \ clear_treemap(M, X->index);\ }\ else if (RTCHECK(ok_address(M, XP))) {\ if (XP->child[0] == X) \ XP->child[0] = R;\ else \ XP->child[1] = R;\ }\ else\ CORRUPTION_ERROR_ACTION(M);\ if (R != 0) {\ if (RTCHECK(ok_address(M, R))) {\ tchunkptr C0, C1;\ R->parent = XP;\ if ((C0 = X->child[0]) != 0) {\ if (RTCHECK(ok_address(M, C0))) {\ R->child[0] = C0;\ C0->parent = R;\ }\ else\ CORRUPTION_ERROR_ACTION(M);\ }\ if ((C1 = X->child[1]) != 0) {\ if (RTCHECK(ok_address(M, C1))) {\ R->child[1] = C1;\ C1->parent = R;\ }\ else\ CORRUPTION_ERROR_ACTION(M);\ }\ }\ else\ CORRUPTION_ERROR_ACTION(M);\ }\ }\ } /* Relays to large vs small bin operations */ #define insert_chunk(M, P, S)\ if (is_small(S)) insert_small_chunk(M, P, S)\ else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } #define unlink_chunk(M, P, S)\ if (is_small(S)) unlink_small_chunk(M, P, S)\ else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } /* Relays to internal calls to malloc/free from realloc, memalign etc */ #if ONLY_MSPACES #define internal_malloc(m, b) mspace_malloc(m, b) #define internal_free(m, mem) mspace_free(m,mem); #else /* ONLY_MSPACES */ #if MSPACES #define internal_malloc(m, b)\ (m == gm)? dlmalloc(b) : mspace_malloc(m, b) #define internal_free(m, mem)\ if (m == gm) dlfree(mem); else mspace_free(m,mem); #else /* MSPACES */ #define internal_malloc(m, b) dlmalloc(b) #define internal_free(m, mem) dlfree(mem) #endif /* MSPACES */ #endif /* ONLY_MSPACES */ /* ----------------------- Direct-mmapping chunks ----------------------- */ /* Directly mmapped chunks are set up with an offset to the start of the mmapped region stored in the prev_foot field of the chunk. This allows reconstruction of the required argument to MUNMAP when freed, and also allows adjustment of the returned chunk to meet alignment requirements (especially in memalign). There is also enough space allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain the PINUSE bit so frees can be checked. */ /* Malloc using mmap */ static void* mmap_alloc(mstate m, size_t nb) { size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); if (mmsize > nb) { /* Check for wrap around 0 */ char* mm = (char*)(DIRECT_MMAP(mmsize)); if (mm != CMFAIL) { size_t offset = align_offset(chunk2mem(mm)); size_t psize = mmsize - offset - MMAP_FOOT_PAD; mchunkptr p = (mchunkptr)(mm + offset); p->prev_foot = offset | IS_MMAPPED_BIT; (p)->head = (psize|CINUSE_BIT); mark_inuse_foot(m, p, psize); chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; if (mm < m->least_addr) m->least_addr = mm; if ((m->footprint += mmsize) > m->max_footprint) m->max_footprint = m->footprint; dl_assert(is_aligned(chunk2mem(p))); check_mmapped_chunk(m, p); return chunk2mem(p); } } return 0; } /* Realloc using mmap */ static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) { size_t oldsize = chunksize(oldp); if (is_small(nb)) /* Can't shrink mmap regions below small size */ return 0; /* Keep old chunk if big enough but not too big */ if (oldsize >= nb + SIZE_T_SIZE && (oldsize - nb) <= (mparams.granularity << 1)) return oldp; else { size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT; size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); char* cp = (char*)CALL_MREMAP((char*)oldp - offset, oldmmsize, newmmsize, 1); if (cp != CMFAIL) { mchunkptr newp = (mchunkptr)(cp + offset); size_t psize = newmmsize - offset - MMAP_FOOT_PAD; newp->head = (psize|CINUSE_BIT); mark_inuse_foot(m, newp, psize); chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; if (cp < m->least_addr) m->least_addr = cp; if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) m->max_footprint = m->footprint; check_mmapped_chunk(m, newp); return newp; } } return 0; } /* -------------------------- mspace management -------------------------- */ /* Initialize top chunk and its size */ static void init_top(mstate m, mchunkptr p, size_t psize) { /* Ensure alignment */ size_t offset = align_offset(chunk2mem(p)); p = (mchunkptr)((char*)p + offset); psize -= offset; m->top = p; m->topsize = psize; p->head = psize | PINUSE_BIT; /* set size of fake trailing chunk holding overhead space only once */ chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; m->trim_check = mparams.trim_threshold; /* reset on each update */ } /* Initialize bins for a new mstate that is otherwise zeroed out */ static void init_bins(mstate m) { /* Establish circular links for smallbins */ bindex_t i; for (i = 0; i < NSMALLBINS; ++i) { sbinptr bin = smallbin_at(m,i); bin->fd = bin->bk = bin; } } #if PROCEED_ON_ERROR /* default corruption action */ static void reset_on_error(mstate m) { int i; ++malloc_corruption_error_count; /* Reinitialize fields to forget about all memory */ m->smallbins = m->treebins = 0; m->dvsize = m->topsize = 0; m->seg.base = 0; m->seg.size = 0; m->seg.next = 0; m->top = m->dv = 0; for (i = 0; i < NTREEBINS; ++i) *treebin_at(m, i) = 0; init_bins(m); } #endif /* PROCEED_ON_ERROR */ /* Allocate chunk and prepend remainder with chunk in successor base. */ static void* prepend_alloc(mstate m, char* newbase, char* oldbase, size_t nb) { mchunkptr p = align_as_chunk(newbase); mchunkptr oldfirst = align_as_chunk(oldbase); size_t psize = (char*)oldfirst - (char*)p; mchunkptr q = chunk_plus_offset(p, nb); size_t qsize = psize - nb; set_size_and_pinuse_of_inuse_chunk(m, p, nb); dl_assert((char*)oldfirst > (char*)q); dl_assert(pinuse(oldfirst)); dl_assert(qsize >= MIN_CHUNK_SIZE); /* consolidate remainder with first chunk of old base */ if (oldfirst == m->top) { size_t tsize = m->topsize += qsize; m->top = q; q->head = tsize | PINUSE_BIT; check_top_chunk(m, q); } else if (oldfirst == m->dv) { size_t dsize = m->dvsize += qsize; m->dv = q; set_size_and_pinuse_of_free_chunk(q, dsize); } else { if (!cinuse(oldfirst)) { size_t nsize = chunksize(oldfirst); unlink_chunk(m, oldfirst, nsize); oldfirst = chunk_plus_offset(oldfirst, nsize); qsize += nsize; } set_free_with_pinuse(q, qsize, oldfirst); insert_chunk(m, q, qsize); check_free_chunk(m, q); } check_malloced_chunk(m, chunk2mem(p), nb); return chunk2mem(p); } /* Add a segment to hold a new noncontiguous region */ static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { /* Determine locations and sizes of segment, fenceposts, old top */ char* old_top = (char*)m->top; msegmentptr oldsp = segment_holding(m, old_top); char* old_end = oldsp->base + oldsp->size; size_t ssize = pad_request(sizeof(struct malloc_segment)); char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); size_t offset = align_offset(chunk2mem(rawsp)); char* asp = rawsp + offset; char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; mchunkptr sp = (mchunkptr)csp; msegmentptr ss = (msegmentptr)(chunk2mem(sp)); mchunkptr tnext = chunk_plus_offset(sp, ssize); mchunkptr p = tnext; int nfences = 0; /* reset top to new space */ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); /* Set up segment record */ dl_assert(is_aligned(ss)); set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); *ss = m->seg; /* Push current record */ m->seg.base = tbase; m->seg.size = tsize; m->seg.sflags = mmapped; m->seg.next = ss; /* Insert trailing fenceposts */ for (;;) { mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); p->head = FENCEPOST_HEAD; ++nfences; if ((char*)(&(nextp->head)) < old_end) p = nextp; else break; } dl_assert(nfences >= 2); /* Insert the rest of old top into a bin as an ordinary free chunk */ if (csp != old_top) { mchunkptr q = (mchunkptr)old_top; size_t psize = csp - old_top; mchunkptr tn = chunk_plus_offset(q, psize); set_free_with_pinuse(q, psize, tn); insert_chunk(m, q, psize); } check_top_chunk(m, m->top); } /* -------------------------- System allocation -------------------------- */ /* Get memory from system using MORECORE or MMAP */ static void* sys_alloc(mstate m, size_t nb) { char* tbase = CMFAIL; size_t tsize = 0; flag_t mmap_flag = 0; init_mparams(); /* Directly map large chunks */ if (use_mmap(m) && nb >= mparams.mmap_threshold) { void* mem = mmap_alloc(m, nb); if (mem != 0) return mem; } /* Try getting memory in any of three ways (in most-preferred to least-preferred order): 1. A call to MORECORE that can normally contiguously extend memory. (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or or main space is mmapped or a previous contiguous call failed) 2. A call to MMAP new space (disabled if not DL_HAVE_MMAP). Note that under the default settings, if MORECORE is unable to fulfill a request, and DL_HAVE_MMAP is true, then mmap is used as a noncontiguous system allocator. This is a useful backup strategy for systems with holes in address spaces -- in this case sbrk cannot contiguously expand the heap, but mmap may be able to find space. 3. A call to MORECORE that cannot usually contiguously extend memory. (disabled if not HAVE_MORECORE) */ if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { char* br = CMFAIL; msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); size_t asize = 0; ACQUIRE_MORECORE_LOCK(); if (ss == 0) { /* First time through or recovery */ char* base = (char*)CALL_MORECORE(0); if (base != CMFAIL) { asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE); /* Adjust to end on a page boundary */ if (!is_page_aligned(base)) asize += (page_align((size_t)base) - (size_t)base); /* Can't call MORECORE if size is negative when treated as signed */ if (asize < HALF_MAX_SIZE_T && (br = (char*)(CALL_MORECORE(asize))) == base) { tbase = base; tsize = asize; } } } else { /* Subtract out existing available top space from MORECORE request. */ asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE); /* Use mem here only if it did continuously extend old space */ if (asize < HALF_MAX_SIZE_T && (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) { tbase = br; tsize = asize; } } if (tbase == CMFAIL) { /* Cope with partial failure */ if (br != CMFAIL) { /* Try to use/extend the space we did get */ if (asize < HALF_MAX_SIZE_T && asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) { size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize); if (esize < HALF_MAX_SIZE_T) { char* end = (char*)CALL_MORECORE(esize); if (end != CMFAIL) asize += esize; else { /* Can't use; try to release */ (void) CALL_MORECORE(-asize); br = CMFAIL; } } } } if (br != CMFAIL) { /* Use the space we did get */ tbase = br; tsize = asize; } else disable_contiguous(m); /* Don't try contiguous path in the future */ } RELEASE_MORECORE_LOCK(); } if (DL_HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */ size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE; size_t rsize = granularity_align(req); if (rsize > nb) { /* Fail if wraps around zero */ char* mp = (char*)(CALL_MMAP(rsize)); if (mp != CMFAIL) { tbase = mp; tsize = rsize; mmap_flag = IS_MMAPPED_BIT; } } } if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE); if (asize < HALF_MAX_SIZE_T) { char* br = CMFAIL; char* end = CMFAIL; ACQUIRE_MORECORE_LOCK(); br = (char*)(CALL_MORECORE(asize)); end = (char*)(CALL_MORECORE(0)); RELEASE_MORECORE_LOCK(); if (br != CMFAIL && end != CMFAIL && br < end) { size_t ssize = end - br; if (ssize > nb + TOP_FOOT_SIZE) { tbase = br; tsize = ssize; } } } } if (tbase != CMFAIL) { if ((m->footprint += tsize) > m->max_footprint) m->max_footprint = m->footprint; if (!is_initialized(m)) { /* first-time initialization */ m->seg.base = m->least_addr = tbase; m->seg.size = tsize; m->seg.sflags = mmap_flag; m->magic = mparams.magic; m->release_checks = MAX_RELEASE_CHECK_RATE; init_bins(m); #if !ONLY_MSPACES if (is_global(m)) init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); else #endif { /* Offset top by embedded malloc_state */ mchunkptr mn = next_chunk(mem2chunk(m)); init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); } } else { /* Try to merge with an existing segment */ msegmentptr sp = &m->seg; /* Only consider most recent segment if traversal suppressed */ while (sp != 0 && tbase != sp->base + sp->size) sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; if (sp != 0 && !is_extern_segment(sp) && (sp->sflags & IS_MMAPPED_BIT) == mmap_flag && segment_holds(sp, m->top)) { /* append */ sp->size += tsize; init_top(m, m->top, m->topsize + tsize); } else { if (tbase < m->least_addr) m->least_addr = tbase; sp = &m->seg; while (sp != 0 && sp->base != tbase + tsize) sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; if (sp != 0 && !is_extern_segment(sp) && (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) { char* oldbase = sp->base; sp->base = tbase; sp->size += tsize; return prepend_alloc(m, tbase, oldbase, nb); } else add_segment(m, tbase, tsize, mmap_flag); } } if (nb < m->topsize) { /* Allocate from new or extended top space */ size_t rsize = m->topsize -= nb; mchunkptr p = m->top; mchunkptr r = m->top = chunk_plus_offset(p, nb); r->head = rsize | PINUSE_BIT; set_size_and_pinuse_of_inuse_chunk(m, p, nb); check_top_chunk(m, m->top); check_malloced_chunk(m, chunk2mem(p), nb); return chunk2mem(p); } } MALLOC_FAILURE_ACTION; return 0; } /* ----------------------- system deallocation -------------------------- */ /* Unmap and unlink any mmapped segments that don't contain used chunks */ static size_t release_unused_segments(mstate m) { size_t released = 0; int nsegs = 0; msegmentptr pred = &m->seg; msegmentptr sp = pred->next; while (sp != 0) { char* base = sp->base; size_t size = sp->size; msegmentptr next = sp->next; ++nsegs; if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { mchunkptr p = align_as_chunk(base); size_t psize = chunksize(p); /* Can unmap if first chunk holds entire segment and not pinned */ if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { tchunkptr tp = (tchunkptr)p; dl_assert(segment_holds(sp, (char*)sp)); if (p == m->dv) { m->dv = 0; m->dvsize = 0; } else { unlink_large_chunk(m, tp); } if (CALL_MUNMAP(base, size) == 0) { released += size; m->footprint -= size; /* unlink obsoleted record */ sp = pred; sp->next = next; } else { /* back out if cannot unmap */ insert_large_chunk(m, tp, psize); } } } if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */ break; pred = sp; sp = next; } /* Reset check counter */ m->release_checks = ((nsegs > (int)MAX_RELEASE_CHECK_RATE)? (size_t)nsegs : MAX_RELEASE_CHECK_RATE); return released; } static int sys_trim(mstate m, size_t pad) { size_t released = 0; if (pad < MAX_REQUEST && is_initialized(m)) { pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ if (m->topsize > pad) { /* Shrink top space in granularity-size units, keeping at least one */ size_t unit = mparams.granularity; size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - SIZE_T_ONE) * unit; msegmentptr sp = segment_holding(m, (char*)m->top); if (!is_extern_segment(sp)) { if (is_mmapped_segment(sp)) { if (DL_HAVE_MMAP && sp->size >= extra && !has_segment_link(m, sp)) { /* can't shrink if pinned */ size_t newsize = sp->size - extra; /* Prefer mremap, fall back to munmap */ if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { released = extra; } } } else if (HAVE_MORECORE) { if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; ACQUIRE_MORECORE_LOCK(); { /* Make sure end of memory is where we last set it. */ char* old_br = (char*)(CALL_MORECORE(0)); if (old_br == sp->base + sp->size) { char* rel_br = (char*)(CALL_MORECORE(-extra)); char* new_br = (char*)(CALL_MORECORE(0)); if (rel_br != CMFAIL && new_br < old_br) released = old_br - new_br; } } RELEASE_MORECORE_LOCK(); } } if (released != 0) { sp->size -= released; m->footprint -= released; init_top(m, m->top, m->topsize - released); check_top_chunk(m, m->top); } } /* Unmap any unused mmapped segments */ if (DL_HAVE_MMAP) released += release_unused_segments(m); /* On failure, disable autotrim to avoid repeated failed future calls */ if (released == 0 && m->topsize > m->trim_check) m->trim_check = MAX_SIZE_T; } return (released != 0)? 1 : 0; } /* ---------------------------- malloc support --------------------------- */ /* allocate a large request from the best fitting chunk in a treebin */ static void* tmalloc_large(mstate m, size_t nb) { tchunkptr v = 0; size_t rsize = -nb; /* Unsigned negation */ tchunkptr t; bindex_t idx; compute_tree_index(nb, idx); if ((t = *treebin_at(m, idx)) != 0) { /* Traverse tree for this bin looking for node with size == nb */ size_t sizebits = nb << leftshift_for_tree_index(idx); tchunkptr rst = 0; /* The deepest untaken right subtree */ for (;;) { tchunkptr rt; size_t trem = chunksize(t) - nb; if (trem < rsize) { v = t; if ((rsize = trem) == 0) break; } rt = t->child[1]; t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; if (rt != 0 && rt != t) rst = rt; if (t == 0) { t = rst; /* set t to least subtree holding sizes > nb */ break; } sizebits <<= 1; } } if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; if (leftbits != 0) { bindex_t i; binmap_t leastbit = least_bit(leftbits); compute_bit2idx(leastbit, i); t = *treebin_at(m, i); } } while (t != 0) { /* find smallest of tree or subtree */ size_t trem = chunksize(t) - nb; if (trem < rsize) { rsize = trem; v = t; } t = leftmost_child(t); } /* If dv is a better fit, return 0 so malloc will use it */ if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { if (RTCHECK(ok_address(m, v))) { /* split */ mchunkptr r = chunk_plus_offset(v, nb); dl_assert(chunksize(v) == rsize + nb); if (RTCHECK(ok_next(v, r))) { unlink_large_chunk(m, v); if (rsize < MIN_CHUNK_SIZE) set_inuse_and_pinuse(m, v, (rsize + nb)); else { set_size_and_pinuse_of_inuse_chunk(m, v, nb); set_size_and_pinuse_of_free_chunk(r, rsize); insert_chunk(m, r, rsize); } return chunk2mem(v); } } CORRUPTION_ERROR_ACTION(m); } return 0; } /* allocate a small request from the best fitting chunk in a treebin */ static void* tmalloc_small(mstate m, size_t nb) { tchunkptr t, v; size_t rsize; bindex_t i; binmap_t leastbit = least_bit(m->treemap); compute_bit2idx(leastbit, i); v = t = *treebin_at(m, i); rsize = chunksize(t) - nb; while ((t = leftmost_child(t)) != 0) { size_t trem = chunksize(t) - nb; if (trem < rsize) { rsize = trem; v = t; } } if (RTCHECK(ok_address(m, v))) { mchunkptr r = chunk_plus_offset(v, nb); dl_assert(chunksize(v) == rsize + nb); if (RTCHECK(ok_next(v, r))) { unlink_large_chunk(m, v); if (rsize < MIN_CHUNK_SIZE) set_inuse_and_pinuse(m, v, (rsize + nb)); else { set_size_and_pinuse_of_inuse_chunk(m, v, nb); set_size_and_pinuse_of_free_chunk(r, rsize); replace_dv(m, r, rsize); } return chunk2mem(v); } } CORRUPTION_ERROR_ACTION(m); return 0; } /* --------------------------- realloc support --------------------------- */ static void* internal_realloc(mstate m, void* oldmem, size_t bytes) { if (bytes >= MAX_REQUEST) { MALLOC_FAILURE_ACTION; return 0; } if (!PREACTION(m)) { mchunkptr oldp = mem2chunk(oldmem); size_t oldsize = chunksize(oldp); mchunkptr next = chunk_plus_offset(oldp, oldsize); mchunkptr newp = 0; void* extra = 0; /* Try to either shrink or extend into top. Else malloc-copy-free */ if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) && ok_next(oldp, next) && ok_pinuse(next))) { size_t nb = request2size(bytes); if (is_mmapped(oldp)) newp = mmap_resize(m, oldp, nb); else if (oldsize >= nb) { /* already big enough */ size_t rsize = oldsize - nb; newp = oldp; if (rsize >= MIN_CHUNK_SIZE) { mchunkptr remainder = chunk_plus_offset(newp, nb); set_inuse(m, newp, nb); set_inuse(m, remainder, rsize); extra = chunk2mem(remainder); } } else if (next == m->top && oldsize + m->topsize > nb) { /* Expand into top */ size_t newsize = oldsize + m->topsize; size_t newtopsize = newsize - nb; mchunkptr newtop = chunk_plus_offset(oldp, nb); set_inuse(m, oldp, nb); newtop->head = newtopsize |PINUSE_BIT; m->top = newtop; m->topsize = newtopsize; newp = oldp; } } else { USAGE_ERROR_ACTION(m, oldmem); POSTACTION(m); return 0; } POSTACTION(m); if (newp != 0) { if (extra != 0) { internal_free(m, extra); } check_inuse_chunk(m, newp); return chunk2mem(newp); } else { void* newmem = internal_malloc(m, bytes); if (newmem != 0) { size_t oc = oldsize - overhead_for(oldp); memcpy(newmem, oldmem, (oc < bytes)? oc : bytes); internal_free(m, oldmem); } return newmem; } } return 0; } /* --------------------------- memalign support -------------------------- */ static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */ return internal_malloc(m, bytes); if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ alignment = MIN_CHUNK_SIZE; if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ size_t a = MALLOC_ALIGNMENT << 1; while (a < alignment) a <<= 1; alignment = a; } if (bytes >= MAX_REQUEST - alignment) { if (m != 0) { /* Test isn't needed but avoids compiler warning */ MALLOC_FAILURE_ACTION; } } else { size_t nb = request2size(bytes); size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; char* mem = (char*)internal_malloc(m, req); if (mem != 0) { void* leader = 0; void* trailer = 0; mchunkptr p = mem2chunk(mem); if (PREACTION(m)) return 0; if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */ /* Find an aligned spot inside chunk. Since we need to give back leading space in a chunk of at least MIN_CHUNK_SIZE, if the first calculation places us at a spot with less than MIN_CHUNK_SIZE leader, we can move to the next aligned spot. We've allocated enough total room so that this is always possible. */ char* br = (char*)mem2chunk((size_t)(((size_t)(mem + alignment - SIZE_T_ONE)) & -alignment)); char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? br : br+alignment; mchunkptr newp = (mchunkptr)pos; size_t leadsize = pos - (char*)(p); size_t newsize = chunksize(p) - leadsize; if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ newp->prev_foot = p->prev_foot + leadsize; newp->head = (newsize|CINUSE_BIT); } else { /* Otherwise, give back leader, use the rest */ set_inuse(m, newp, newsize); set_inuse(m, p, leadsize); leader = chunk2mem(p); } p = newp; } /* Give back spare room at the end */ if (!is_mmapped(p)) { size_t size = chunksize(p); if (size > nb + MIN_CHUNK_SIZE) { size_t remainder_size = size - nb; mchunkptr remainder = chunk_plus_offset(p, nb); set_inuse(m, p, nb); set_inuse(m, remainder, remainder_size); trailer = chunk2mem(remainder); } } assert (chunksize(p) >= nb); dl_assert((((size_t)(chunk2mem(p))) % alignment) == 0); check_inuse_chunk(m, p); POSTACTION(m); if (leader != 0) { internal_free(m, leader); } if (trailer != 0) { internal_free(m, trailer); } return chunk2mem(p); } } return 0; } /* ------------------------ comalloc/coalloc support --------------------- */ static void** ialloc(mstate m, size_t n_elements, size_t* sizes, int opts, void* chunks[]) { /* This provides common support for independent_X routines, handling all of the combinations that can result. The opts arg has: bit 0 set if all elements are same size (using sizes[0]) bit 1 set if elements should be zeroed */ size_t element_size; /* chunksize of each element, if all same */ size_t contents_size; /* total size of elements */ size_t array_size; /* request size of pointer array */ void* mem; /* malloced aggregate space */ mchunkptr p; /* corresponding chunk */ size_t remainder_size; /* remaining bytes while splitting */ void** marray; /* either "chunks" or malloced ptr array */ mchunkptr array_chunk; /* chunk for malloced ptr array */ flag_t was_enabled; /* to disable mmap */ size_t size; size_t i; /* compute array length, if needed */ if (chunks != 0) { if (n_elements == 0) return chunks; /* nothing to do */ marray = chunks; array_size = 0; } else { /* if empty req, must still return chunk representing empty array */ if (n_elements == 0) return (void**)internal_malloc(m, 0); marray = 0; array_size = request2size(n_elements * (sizeof(void*))); } /* compute total element size */ if (opts & 0x1) { /* all-same-size */ element_size = request2size(*sizes); contents_size = n_elements * element_size; } else { /* add up all the sizes */ element_size = 0; contents_size = 0; for (i = 0; i != n_elements; ++i) contents_size += request2size(sizes[i]); } size = contents_size + array_size; /* Allocate the aggregate chunk. First disable direct-mmapping so malloc won't use it, since we would not be able to later free/realloc space internal to a segregated mmap region. */ was_enabled = use_mmap(m); disable_mmap(m); mem = internal_malloc(m, size - CHUNK_OVERHEAD); if (was_enabled) enable_mmap(m); if (mem == 0) return 0; if (PREACTION(m)) return 0; p = mem2chunk(mem); remainder_size = chunksize(p); dl_assert(!is_mmapped(p)); if (opts & 0x2) { /* optionally clear the elements */ memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); } /* If not provided, allocate the pointer array as final part of chunk */ if (marray == 0) { size_t array_chunk_size; array_chunk = chunk_plus_offset(p, contents_size); array_chunk_size = remainder_size - contents_size; marray = (void**) (chunk2mem(array_chunk)); set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); remainder_size = contents_size; } /* split out elements */ for (i = 0; ; ++i) { marray[i] = chunk2mem(p); if (i != n_elements-1) { if (element_size != 0) size = element_size; else size = request2size(sizes[i]); remainder_size -= size; set_size_and_pinuse_of_inuse_chunk(m, p, size); p = chunk_plus_offset(p, size); } else { /* the final element absorbs any overallocation slop */ set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); break; } } #if DL_DEBUG if (marray != chunks) { /* final element must have exactly exhausted chunk */ if (element_size != 0) { dl_assert(remainder_size == element_size); } else { dl_assert(remainder_size == request2size(sizes[i])); } check_inuse_chunk(m, mem2chunk(marray)); } for (i = 0; i != n_elements; ++i) check_inuse_chunk(m, mem2chunk(marray[i])); #endif /* DL_DEBUG */ POSTACTION(m); return marray; } /* -------------------------- public routines ---------------------------- */ #if !ONLY_MSPACES void* dlmalloc(size_t bytes) { /* Basic algorithm: If a small request (< 256 bytes minus per-chunk overhead): 1. If one exists, use a remainderless chunk in associated smallbin. (Remainderless means that there are too few excess bytes to represent as a chunk.) 2. If it is big enough, use the dv chunk, which is normally the chunk adjacent to the one used for the most recent small request. 3. If one exists, split the smallest available chunk in a bin, saving remainder in dv. 4. If it is big enough, use the top chunk. 5. If available, get memory from system and use it Otherwise, for a large request: 1. Find the smallest available binned chunk that fits, and use it if it is better fitting than dv chunk, splitting if necessary. 2. If better fitting than any binned chunk, use the dv chunk. 3. If it is big enough, use the top chunk. 4. If request size >= mmap threshold, try to directly mmap this chunk. 5. If available, get memory from system and use it The ugly goto's here ensure that postaction occurs along all paths. */ if (!PREACTION(gm)) { void* mem; size_t nb; if (bytes <= MAX_SMALL_REQUEST) { bindex_t idx; binmap_t smallbits; nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); idx = small_index(nb); smallbits = gm->smallmap >> idx; if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ mchunkptr b, p; idx += ~smallbits & 1; /* Uses next bin if idx empty */ b = smallbin_at(gm, idx); p = b->fd; dl_assert(chunksize(p) == small_index2size(idx)); unlink_first_small_chunk(gm, b, p, idx); set_inuse_and_pinuse(gm, p, small_index2size(idx)); mem = chunk2mem(p); check_malloced_chunk(gm, mem, nb); goto postaction; } else if (nb > gm->dvsize) { if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ mchunkptr b, p, r; size_t rsize; bindex_t i; binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); binmap_t leastbit = least_bit(leftbits); compute_bit2idx(leastbit, i); b = smallbin_at(gm, i); p = b->fd; dl_assert(chunksize(p) == small_index2size(i)); unlink_first_small_chunk(gm, b, p, i); rsize = small_index2size(i) - nb; /* Fit here cannot be remainderless if 4byte sizes */ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) set_inuse_and_pinuse(gm, p, small_index2size(i)); else { set_size_and_pinuse_of_inuse_chunk(gm, p, nb); r = chunk_plus_offset(p, nb); set_size_and_pinuse_of_free_chunk(r, rsize); replace_dv(gm, r, rsize); } mem = chunk2mem(p); check_malloced_chunk(gm, mem, nb); goto postaction; } else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { check_malloced_chunk(gm, mem, nb); goto postaction; } } } else if (bytes >= MAX_REQUEST) nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ else { nb = pad_request(bytes); if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { check_malloced_chunk(gm, mem, nb); goto postaction; } } if (nb <= gm->dvsize) { size_t rsize = gm->dvsize - nb; mchunkptr p = gm->dv; if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ mchunkptr r = gm->dv = chunk_plus_offset(p, nb); gm->dvsize = rsize; set_size_and_pinuse_of_free_chunk(r, rsize); set_size_and_pinuse_of_inuse_chunk(gm, p, nb); } else { /* exhaust dv */ size_t dvs = gm->dvsize; gm->dvsize = 0; gm->dv = 0; set_inuse_and_pinuse(gm, p, dvs); } mem = chunk2mem(p); check_malloced_chunk(gm, mem, nb); goto postaction; } else if (nb < gm->topsize) { /* Split top */ size_t rsize = gm->topsize -= nb; mchunkptr p = gm->top; mchunkptr r = gm->top = chunk_plus_offset(p, nb); r->head = rsize | PINUSE_BIT; set_size_and_pinuse_of_inuse_chunk(gm, p, nb); mem = chunk2mem(p); check_top_chunk(gm, gm->top); check_malloced_chunk(gm, mem, nb); goto postaction; } mem = sys_alloc(gm, nb); postaction: POSTACTION(gm); return mem; } return 0; } void dlfree(void* mem) { /* Consolidate freed chunks with preceeding or succeeding bordering free chunks, if they exist, and then place in a bin. Intermixed with special cases for top, dv, mmapped chunks, and usage errors. */ if (mem != 0) { mchunkptr p = mem2chunk(mem); #if FOOTERS mstate fm = get_mstate_for(p); if (!ok_magic(fm)) { USAGE_ERROR_ACTION(fm, p); return; } #else /* FOOTERS */ #define fm gm #endif /* FOOTERS */ if (!PREACTION(fm)) { check_inuse_chunk(fm, p); if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) { size_t psize = chunksize(p); mchunkptr next = chunk_plus_offset(p, psize); if (!pinuse(p)) { size_t prevsize = p->prev_foot; if ((prevsize & IS_MMAPPED_BIT) != 0) { prevsize &= ~IS_MMAPPED_BIT; psize += prevsize + MMAP_FOOT_PAD; if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) fm->footprint -= psize; goto postaction; } else { mchunkptr prev = chunk_minus_offset(p, prevsize); psize += prevsize; p = prev; if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ if (p != fm->dv) { unlink_chunk(fm, p, prevsize); } else if ((next->head & INUSE_BITS) == INUSE_BITS) { fm->dvsize = psize; set_free_with_pinuse(p, psize, next); goto postaction; } } else goto erroraction; } } if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { if (!cinuse(next)) { /* consolidate forward */ if (next == fm->top) { size_t tsize = fm->topsize += psize; fm->top = p; p->head = tsize | PINUSE_BIT; if (p == fm->dv) { fm->dv = 0; fm->dvsize = 0; } if (should_trim(fm, tsize)) sys_trim(fm, 0); goto postaction; } else if (next == fm->dv) { size_t dsize = fm->dvsize += psize; fm->dv = p; set_size_and_pinuse_of_free_chunk(p, dsize); goto postaction; } else { size_t nsize = chunksize(next); psize += nsize; unlink_chunk(fm, next, nsize); set_size_and_pinuse_of_free_chunk(p, psize); if (p == fm->dv) { fm->dvsize = psize; goto postaction; } } } else set_free_with_pinuse(p, psize, next); if (is_small(psize)) { insert_small_chunk(fm, p, psize); check_free_chunk(fm, p); } else { tchunkptr tp = (tchunkptr)p; insert_large_chunk(fm, tp, psize); check_free_chunk(fm, p); if (--fm->release_checks == 0) release_unused_segments(fm); } goto postaction; } } erroraction: USAGE_ERROR_ACTION(fm, p); postaction: POSTACTION(fm); } } #if !FOOTERS #undef fm #endif /* FOOTERS */ } void* dlcalloc(size_t n_elements, size_t elem_size) { void* mem; size_t req = 0; if (n_elements != 0) { req = n_elements * elem_size; if (((n_elements | elem_size) & ~(size_t)0xffff) && (req / n_elements != elem_size)) req = MAX_SIZE_T; /* force downstream failure on overflow */ } mem = dlmalloc(req); if (mem != 0 && calloc_must_clear(mem2chunk(mem))) memset(mem, 0, req); return mem; } void* dlrealloc(void* oldmem, size_t bytes) { // printf("oldmem=%p bytes=%d\n", oldmem, (int)bytes); if (oldmem == 0) return dlmalloc(bytes); #ifdef REALLOC_ZERO_BYTES_FREES if (bytes == 0) { dlfree(oldmem); return 0; } #endif /* REALLOC_ZERO_BYTES_FREES */ else { #if ! FOOTERS mstate m = gm; #else /* FOOTERS */ //printf("checking state\n"); mstate m = get_mstate_for(mem2chunk(oldmem)); // mchunkptr p = mem2chunk(oldmem); //printf("checking state m=%p gm=%p least_addr=%p p=%p, head=%x size=%d pp=%x\n", m, gm, gm->least_addr, p, (unsigned)p->head, (int)chunksize(p), // (unsigned)(((mchunkptr)((char*)(p) +(chunksize(p))))->prev_foot) // ); if (!ok_magic(m)) { //printf("checking state - oops\n"); USAGE_ERROR_ACTION(m, oldmem); return 0; } //printf("checking state OK\n"); #endif /* FOOTERS */ //printf("to internal realloc m=%p gm=%p, mparams.magic=%x oldmem=%p bytes=%d\n", m, gm, (unsigned)mparams.magic, oldmem, (int)bytes); return internal_realloc(m, oldmem, bytes); } } void* dlmemalign(size_t alignment, size_t bytes) { return internal_memalign(gm, alignment, bytes); } void** dlindependent_calloc(size_t n_elements, size_t elem_size, void* chunks[]) { size_t sz = elem_size; /* serves as 1-element array */ return ialloc(gm, n_elements, &sz, 3, chunks); } void** dlindependent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]) { return ialloc(gm, n_elements, sizes, 0, chunks); } void* dlvalloc(size_t bytes) { size_t pagesz; init_mparams(); pagesz = mparams.page_size; return dlmemalign(pagesz, bytes); } void* dlpvalloc(size_t bytes) { size_t pagesz; init_mparams(); pagesz = mparams.page_size; return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); } int dlmalloc_trim(size_t pad) { int result = 0; if (!PREACTION(gm)) { result = sys_trim(gm, pad); POSTACTION(gm); } return result; } size_t dlmalloc_footprint(void) { return gm->footprint; } size_t dlmalloc_max_footprint(void) { return gm->max_footprint; } #if !NO_MALLINFO struct mallinfo dlmallinfo(void) { return internal_mallinfo(gm); } #endif /* NO_MALLINFO */ void dlmalloc_stats() { internal_malloc_stats(gm); } size_t dlmalloc_usable_size(void* mem) { if (mem != 0) { mchunkptr p = mem2chunk(mem); if (cinuse(p)) return chunksize(p) - overhead_for(p); } return 0; } int dlmallopt(int param_number, int value) { return change_mparam(param_number, value); } #endif /* !ONLY_MSPACES */ /* ----------------------------- user mspaces ---------------------------- */ #if MSPACES static mstate init_user_mstate(char* tbase, size_t tsize) { size_t msize = pad_request(sizeof(struct malloc_state)); mchunkptr mn; mchunkptr msp = align_as_chunk(tbase); mstate m = (mstate)(chunk2mem(msp)); memset(m, 0, msize); INITIAL_LOCK(&m->mutex); msp->head = (msize|PINUSE_BIT|CINUSE_BIT); m->seg.base = m->least_addr = tbase; m->seg.size = m->footprint = m->max_footprint = tsize; m->magic = mparams.magic; m->release_checks = MAX_RELEASE_CHECK_RATE; m->mflags = mparams.default_mflags; m->extp = 0; m->exts = 0; disable_contiguous(m); init_bins(m); mn = next_chunk(mem2chunk(m)); init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE); check_top_chunk(m, m->top); return m; } mspace create_mspace(size_t capacity, int locked) { mstate m = 0; size_t msize = pad_request(sizeof(struct malloc_state)); init_mparams(); /* Ensure pagesize etc initialized */ if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { size_t rs = ((capacity == 0)? mparams.granularity : (capacity + TOP_FOOT_SIZE + msize)); size_t tsize = granularity_align(rs); char* tbase = (char*)(CALL_MMAP(tsize)); if (tbase != CMFAIL) { m = init_user_mstate(tbase, tsize); m->seg.sflags = IS_MMAPPED_BIT; set_lock(m, locked); } } return (mspace)m; } mspace create_mspace_with_base(void* base, size_t capacity, int locked) { mstate m = 0; size_t msize = pad_request(sizeof(struct malloc_state)); init_mparams(); /* Ensure pagesize etc initialized */ if (capacity > msize + TOP_FOOT_SIZE && capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { m = init_user_mstate((char*)base, capacity); m->seg.sflags = EXTERN_BIT; set_lock(m, locked); } return (mspace)m; } size_t destroy_mspace(mspace msp) { size_t freed = 0; mstate ms = (mstate)msp; if (ok_magic(ms)) { msegmentptr sp = &ms->seg; while (sp != 0) { char* base = sp->base; size_t size = sp->size; flag_t flag = sp->sflags; sp = sp->next; if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) && CALL_MUNMAP(base, size) == 0) freed += size; } } else { USAGE_ERROR_ACTION(ms,ms); } return freed; } /* mspace versions of routines are near-clones of the global versions. This is not so nice but better than the alternatives. */ void* mspace_malloc(mspace msp, size_t bytes) { mstate ms = (mstate)msp; if (!ok_magic(ms)) { USAGE_ERROR_ACTION(ms,ms); return 0; } if (!PREACTION(ms)) { void* mem; size_t nb; if (bytes <= MAX_SMALL_REQUEST) { bindex_t idx; binmap_t smallbits; nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); idx = small_index(nb); smallbits = ms->smallmap >> idx; if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ mchunkptr b, p; idx += ~smallbits & 1; /* Uses next bin if idx empty */ b = smallbin_at(ms, idx); p = b->fd; dl_assert(chunksize(p) == small_index2size(idx)); unlink_first_small_chunk(ms, b, p, idx); set_inuse_and_pinuse(ms, p, small_index2size(idx)); mem = chunk2mem(p); check_malloced_chunk(ms, mem, nb); goto postaction; } else if (nb > ms->dvsize) { if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ mchunkptr b, p, r; size_t rsize; bindex_t i; binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); binmap_t leastbit = least_bit(leftbits); compute_bit2idx(leastbit, i); b = smallbin_at(ms, i); p = b->fd; dl_assert(chunksize(p) == small_index2size(i)); unlink_first_small_chunk(ms, b, p, i); rsize = small_index2size(i) - nb; /* Fit here cannot be remainderless if 4byte sizes */ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) set_inuse_and_pinuse(ms, p, small_index2size(i)); else { set_size_and_pinuse_of_inuse_chunk(ms, p, nb); r = chunk_plus_offset(p, nb); set_size_and_pinuse_of_free_chunk(r, rsize); replace_dv(ms, r, rsize); } mem = chunk2mem(p); check_malloced_chunk(ms, mem, nb); goto postaction; } else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { check_malloced_chunk(ms, mem, nb); goto postaction; } } } else if (bytes >= MAX_REQUEST) nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ else { nb = pad_request(bytes); if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { check_malloced_chunk(ms, mem, nb); goto postaction; } } if (nb <= ms->dvsize) { size_t rsize = ms->dvsize - nb; mchunkptr p = ms->dv; if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ mchunkptr r = ms->dv = chunk_plus_offset(p, nb); ms->dvsize = rsize; set_size_and_pinuse_of_free_chunk(r, rsize); set_size_and_pinuse_of_inuse_chunk(ms, p, nb); } else { /* exhaust dv */ size_t dvs = ms->dvsize; ms->dvsize = 0; ms->dv = 0; set_inuse_and_pinuse(ms, p, dvs); } mem = chunk2mem(p); check_malloced_chunk(ms, mem, nb); goto postaction; } else if (nb < ms->topsize) { /* Split top */ size_t rsize = ms->topsize -= nb; mchunkptr p = ms->top; mchunkptr r = ms->top = chunk_plus_offset(p, nb); r->head = rsize | PINUSE_BIT; set_size_and_pinuse_of_inuse_chunk(ms, p, nb); mem = chunk2mem(p); check_top_chunk(ms, ms->top); check_malloced_chunk(ms, mem, nb); goto postaction; } mem = sys_alloc(ms, nb); postaction: POSTACTION(ms); return mem; } return 0; } void mspace_free(mspace msp, void* mem) { if (mem != 0) { mchunkptr p = mem2chunk(mem); #if FOOTERS mstate fm = get_mstate_for(p); #else /* FOOTERS */ mstate fm = (mstate)msp; #endif /* FOOTERS */ if (!ok_magic(fm)) { USAGE_ERROR_ACTION(fm, p); return; } if (!PREACTION(fm)) { check_inuse_chunk(fm, p); if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) { size_t psize = chunksize(p); mchunkptr next = chunk_plus_offset(p, psize); if (!pinuse(p)) { size_t prevsize = p->prev_foot; if ((prevsize & IS_MMAPPED_BIT) != 0) { prevsize &= ~IS_MMAPPED_BIT; psize += prevsize + MMAP_FOOT_PAD; if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) fm->footprint -= psize; goto postaction; } else { mchunkptr prev = chunk_minus_offset(p, prevsize); psize += prevsize; p = prev; if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ if (p != fm->dv) { unlink_chunk(fm, p, prevsize); } else if ((next->head & INUSE_BITS) == INUSE_BITS) { fm->dvsize = psize; set_free_with_pinuse(p, psize, next); goto postaction; } } else goto erroraction; } } if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { if (!cinuse(next)) { /* consolidate forward */ if (next == fm->top) { size_t tsize = fm->topsize += psize; fm->top = p; p->head = tsize | PINUSE_BIT; if (p == fm->dv) { fm->dv = 0; fm->dvsize = 0; } if (should_trim(fm, tsize)) sys_trim(fm, 0); goto postaction; } else if (next == fm->dv) { size_t dsize = fm->dvsize += psize; fm->dv = p; set_size_and_pinuse_of_free_chunk(p, dsize); goto postaction; } else { size_t nsize = chunksize(next); psize += nsize; unlink_chunk(fm, next, nsize); set_size_and_pinuse_of_free_chunk(p, psize); if (p == fm->dv) { fm->dvsize = psize; goto postaction; } } } else set_free_with_pinuse(p, psize, next); if (is_small(psize)) { insert_small_chunk(fm, p, psize); check_free_chunk(fm, p); } else { tchunkptr tp = (tchunkptr)p; insert_large_chunk(fm, tp, psize); check_free_chunk(fm, p); if (--fm->release_checks == 0) release_unused_segments(fm); } goto postaction; } } erroraction: USAGE_ERROR_ACTION(fm, p); postaction: POSTACTION(fm); } } } void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) { void* mem; size_t req = 0; mstate ms = (mstate)msp; if (!ok_magic(ms)) { USAGE_ERROR_ACTION(ms,ms); return 0; } if (n_elements != 0) { req = n_elements * elem_size; if (((n_elements | elem_size) & ~(size_t)0xffff) && (req / n_elements != elem_size)) req = MAX_SIZE_T; /* force downstream failure on overflow */ } mem = internal_malloc(ms, req); if (mem != 0 && calloc_must_clear(mem2chunk(mem))) memset(mem, 0, req); return mem; } void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) { if (oldmem == 0) return mspace_malloc(msp, bytes); #ifdef REALLOC_ZERO_BYTES_FREES if (bytes == 0) { mspace_free(msp, oldmem); return 0; } #endif /* REALLOC_ZERO_BYTES_FREES */ else { #if FOOTERS mchunkptr p = mem2chunk(oldmem); mstate ms = get_mstate_for(p); #else /* FOOTERS */ mstate ms = (mstate)msp; #endif /* FOOTERS */ if (!ok_magic(ms)) { USAGE_ERROR_ACTION(ms,ms); return 0; } return internal_realloc(ms, oldmem, bytes); } } void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) { mstate ms = (mstate)msp; if (!ok_magic(ms)) { USAGE_ERROR_ACTION(ms,ms); return 0; } return internal_memalign(ms, alignment, bytes); } void** mspace_independent_calloc(mspace msp, size_t n_elements, size_t elem_size, void* chunks[]) { size_t sz = elem_size; /* serves as 1-element array */ mstate ms = (mstate)msp; if (!ok_magic(ms)) { USAGE_ERROR_ACTION(ms,ms); return 0; } return ialloc(ms, n_elements, &sz, 3, chunks); } void** mspace_independent_comalloc(mspace msp, size_t n_elements, size_t sizes[], void* chunks[]) { mstate ms = (mstate)msp; if (!ok_magic(ms)) { USAGE_ERROR_ACTION(ms,ms); return 0; } return ialloc(ms, n_elements, sizes, 0, chunks); } int mspace_trim(mspace msp, size_t pad) { int result = 0; mstate ms = (mstate)msp; if (ok_magic(ms)) { if (!PREACTION(ms)) { result = sys_trim(ms, pad); POSTACTION(ms); } } else { USAGE_ERROR_ACTION(ms,ms); } return result; } void mspace_malloc_stats(mspace msp) { mstate ms = (mstate)msp; if (ok_magic(ms)) { internal_malloc_stats(ms); } else { USAGE_ERROR_ACTION(ms,ms); } } size_t mspace_footprint(mspace msp) { size_t result = 0; mstate ms = (mstate)msp; if (ok_magic(ms)) { result = ms->footprint; } else { USAGE_ERROR_ACTION(ms,ms); } return result; } size_t mspace_max_footprint(mspace msp) { size_t result = 0; mstate ms = (mstate)msp; if (ok_magic(ms)) { result = ms->max_footprint; } else { USAGE_ERROR_ACTION(ms,ms); } return result; } #if !NO_MALLINFO struct mallinfo mspace_mallinfo(mspace msp) { mstate ms = (mstate)msp; if (!ok_magic(ms)) { USAGE_ERROR_ACTION(ms,ms); } return internal_mallinfo(ms); } #endif /* NO_MALLINFO */ size_t mspace_usable_size(void* mem) { if (mem != 0) { mchunkptr p = mem2chunk(mem); if (cinuse(p)) return chunksize(p) - overhead_for(p); } return 0; } int mspace_mallopt(int param_number, int value) { return change_mparam(param_number, value); } #endif /* MSPACES */ /* -------------------- Alternative MORECORE functions ------------------- */ /* Guidelines for creating a custom version of MORECORE: * For best performance, MORECORE should allocate in multiples of pagesize. * MORECORE may allocate more memory than requested. (Or even less, but this will usually result in a malloc failure.) * MORECORE must not allocate memory when given argument zero, but instead return one past the end address of memory from previous nonzero call. * For best performance, consecutive calls to MORECORE with positive arguments should return increasing addresses, indicating that space has been contiguously extended. * Even though consecutive calls to MORECORE need not return contiguous addresses, it must be OK for malloc'ed chunks to span multiple regions in those cases where they do happen to be contiguous. * MORECORE need not handle negative arguments -- it may instead just return MFAIL when given negative arguments. Negative arguments are always multiples of pagesize. MORECORE must not misinterpret negative args as large positive unsigned args. You can suppress all such calls from even occurring by defining MORECORE_CANNOT_TRIM, As an example alternative MORECORE, here is a custom allocator kindly contributed for pre-OSX macOS. It uses virtually but not necessarily physically contiguous non-paged memory (locked in, present and won't get swapped out). You can use it by uncommenting this section, adding some #includes, and setting up the appropriate defines above: #define MORECORE osMoreCore There is also a shutdown routine that should somehow be called for cleanup upon program exit. #define MAX_POOL_ENTRIES 100 #define MINIMUM_MORECORE_SIZE (64 * 1024U) static int next_os_pool; void *our_os_pools[MAX_POOL_ENTRIES]; void *osMoreCore(int size) { void *ptr = 0; static void *sbrk_top = 0; if (size > 0) { if (size < MINIMUM_MORECORE_SIZE) size = MINIMUM_MORECORE_SIZE; if (CurrentExecutionLevel() == kTaskLevel) ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); if (ptr == 0) { return (void *) MFAIL; } // save ptrs so they can be freed during cleanup our_os_pools[next_os_pool] = ptr; next_os_pool++; ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); sbrk_top = (char *) ptr + size; return ptr; } else if (size < 0) { // we don't currently support shrink behavior return (void *) MFAIL; } else { return sbrk_top; } } // cleanup any allocated memory pools // called as last thing before shutting down driver void osCleanupMem(void) { void **ptr; for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) if (*ptr) { PoolDeallocate(*ptr); *ptr = 0; } } */ /* ----------------------------------------------------------------------- History: V2.8.4 (not yet released) * Fix bad error check in mspace_footprint * Adaptations for ptmalloc, courtesy of Wolfram Gloger. * Reentrant spin locks, courtesy of Earl Chew and others * Win32 improvements, courtesy of Niall Douglas and Earl Chew * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options * Various small adjustments to reduce warnings on some compilers * Extension hook in malloc_state V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee) * Add max_footprint functions * Ensure all appropriate literals are size_t * Fix conditional compilation problem for some #define settings * Avoid concatenating segments with the one provided in create_mspace_with_base * Rename some variables to avoid compiler shadowing warnings * Use explicit lock initialization. * Better handling of sbrk interference. * Simplify and fix segment insertion, trimming and mspace_destroy * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x * Thanks especially to Dennis Flanagan for help on these. V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee) * Fix memalign brace error. V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee) * Fix improper #endif nesting in C++ * Add explicit casts needed for C++ V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee) * Use trees for large bins * Support mspaces * Use segments to unify sbrk-based and mmap-based system allocation, removing need for emulation on most platforms without sbrk. * Default safety checks * Optional footer checks. Thanks to William Robertson for the idea. * Internal code refactoring * Incorporate suggestions and platform-specific changes. Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, Aaron Bachmann, Emery Berger, and others. * Speed up non-fastbin processing enough to remove fastbins. * Remove useless cfree() to avoid conflicts with other apps. * Remove internal memcpy, memset. Compilers handle builtins better. * Remove some options that no one ever used and rename others. V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee) * Fix malloc_state bitmap array misdeclaration V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee) * Allow tuning of FIRST_SORTED_BIN_SIZE * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. * Better detection and support for non-contiguousness of MORECORE. Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger * Bypass most of malloc if no frees. Thanks To Emery Berger. * Fix freeing of old top non-contiguous chunk im sysmalloc. * Raised default trim and map thresholds to 256K. * Fix mmap-related #defines. Thanks to Lubos Lunak. * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. * Branch-free bin calculation * Default trim and mmap thresholds now 256K. V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) * Introduce independent_comalloc and independent_calloc. Thanks to Michael Pachos for motivation and help. * Make optional .h file available * Allow > 2GB requests on 32bit systems. * new WIN32 sbrk, mmap, munmap, lock code from . Thanks also to Andreas Mueller , and Anonymous. * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for helping test this.) * memalign: check alignment arg * realloc: don't try to shift chunks backwards, since this leads to more fragmentation in some programs and doesn't seem to help in any others. * Collect all cases in malloc requiring system memory into sysmalloc * Use mmap as backup to sbrk * Place all internal state in malloc_state * Introduce fastbins (although similar to 2.5.1) * Many minor tunings and cosmetic improvements * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS Thanks to Tony E. Bennett and others. * Include errno.h to support default failure action. V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) * return null for negative arguments * Added Several WIN32 cleanups from Martin C. Fong * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' (e.g. WIN32 platforms) * Cleanup header file inclusion for WIN32 platforms * Cleanup code to avoid Microsoft Visual C++ compiler complaints * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing memory allocation routines * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to usage of 'assert' in non-WIN32 code * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to avoid infinite loop * Always call 'fREe()' rather than 'free()' V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) * Fixed ordering problem with boundary-stamping V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) * Added pvalloc, as recommended by H.J. Liu * Added 64bit pointer support mainly from Wolfram Gloger * Added anonymously donated WIN32 sbrk emulation * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen * malloc_extend_top: fix mask error that caused wastage after foreign sbrks * Add linux mremap support code from HJ Liu V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) * Integrated most documentation with the code. * Add support for mmap, with help from Wolfram Gloger (Gloger@lrz.uni-muenchen.de). * Use last_remainder in more cases. * Pack bins using idea from colin@nyx10.cs.du.edu * Use ordered bins instead of best-fit threshhold * Eliminate block-local decls to simplify tracing and debugging. * Support another case of realloc via move into top * Fix error occuring when initial sbrk_base not word-aligned. * Rely on page size for units instead of SBRK_UNIT to avoid surprises about sbrk alignment conventions. * Add mallinfo, mallopt. Thanks to Raymond Nijssen (raymond@es.ele.tue.nl) for the suggestion. * Add `pad' argument to malloc_trim and top_pad mallopt parameter. * More precautions for cases where other routines call sbrk, courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). * Added macros etc., allowing use in linux libc from H.J. Lu (hjl@gnu.ai.mit.edu) * Inverted this history list V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) * Re-tuned and fixed to behave more nicely with V2.6.0 changes. * Removed all preallocation code since under current scheme the work required to undo bad preallocations exceeds the work saved in good cases for most test programs. * No longer use return list or unconsolidated bins since no scheme using them consistently outperforms those that don't given above changes. * Use best fit for very large chunks to prevent some worst-cases. * Added some support for debugging V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) * Removed footers when chunks are in use. Thanks to Paul Wilson (wilson@cs.texas.edu) for the suggestion. V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) * Added malloc_trim, with help from Wolfram Gloger (wmglo@Dent.MED.Uni-Muenchen.DE). V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) * realloc: try to expand in both directions * malloc: swap order of clean-bin strategy; * realloc: only conditionally expand backwards * Try not to scavenge used bins * Use bin counts as a guide to preallocation * Occasionally bin return list chunks in first scan * Add a few optimizations from colin@nyx10.cs.du.edu V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) * faster bin computation & slightly different binning * merged all consolidations to one part of malloc proper (eliminating old malloc_find_space & malloc_clean_bin) * Scan 2 returns chunks (not just 1) * Propagate failure in realloc if malloc returns 0 * Add stuff to allow compilation on non-ANSI compilers from kpv@research.att.com V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) * removed potential for odd address access in prev_chunk * removed dependency on getpagesize.h * misc cosmetics and a bit more internal documentation * anticosmetics: mangled names in macros to evade debugger strangeness * tested on sparc, hp-700, dec-mips, rs6000 with gcc & native cc (hp, dec only) allowing Detlefs & Zorn comparison study (in SIGPLAN Notices.) Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) * Based loosely on libg++-1.2X malloc. (It retains some of the overall structure of old version, but most details differ.) */