/* * Copyright (c) 2006 Maxim Yegorushkin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _MIN_HEAP_H_ #define _MIN_HEAP_H_ #include "event.h" typedef struct min_heap { struct event** p; unsigned n, a; } min_heap_t; static inline void min_heap_ctor(min_heap_t* s); static inline void min_heap_dtor(min_heap_t* s); static inline void min_heap_elem_init(struct event* e); static inline int min_heap_elem_greater(struct event *a, struct event *b); static inline int min_heap_empty(min_heap_t* s); static inline unsigned min_heap_size(min_heap_t* s); static inline struct event* min_heap_top(min_heap_t* s); static inline int min_heap_reserve(min_heap_t* s, unsigned n); static inline int min_heap_push(min_heap_t* s, struct event* e); static inline struct event* min_heap_pop(min_heap_t* s); static inline int min_heap_erase(min_heap_t* s, struct event* e); static inline void min_heap_shift_up_(min_heap_t* s, unsigned hole_index, struct event* e); static inline void min_heap_shift_down_(min_heap_t* s, unsigned hole_index, struct event* e); int min_heap_elem_greater(struct event *a, struct event *b) { return evutil_timercmp(&a->ev_timeout, &b->ev_timeout, >); } void min_heap_ctor(min_heap_t* s) { s->p = 0; s->n = 0; s->a = 0; } void min_heap_dtor(min_heap_t* s) { if (NULL != s->p) free(s->p); } void min_heap_elem_init(struct event* e) { e->min_heap_idx = -1; } int min_heap_empty(min_heap_t* s) { return 0u == s->n; } unsigned min_heap_size(min_heap_t* s) { return s->n; } struct event* min_heap_top(min_heap_t* s) { return s->n ? *(s->p) : (struct event*) 0; } int min_heap_push(min_heap_t* s, struct event* e) { if(min_heap_reserve(s, s->n + 1)) return -1; min_heap_shift_up_(s, s->n++, e); return 0; } struct event* min_heap_pop(min_heap_t* s) { if(s->n) { struct event* e = *s->p; e->min_heap_idx = -1; min_heap_shift_down_(s, 0u, s->p[--s->n]); return e; } return 0; } int min_heap_erase(min_heap_t* s, struct event* e) { if(((unsigned int)-1) != e->min_heap_idx) { min_heap_shift_down_(s, e->min_heap_idx, s->p[--s->n]); e->min_heap_idx = -1; return 0; } return -1; } int min_heap_reserve(min_heap_t* s, unsigned n) { if(s->a < n) { struct event** p; unsigned a = s->a ? s->a * 2 : 8; if(a < n) a = n; if(!(p = (struct event**)realloc(s->p, a * sizeof *p))) return -1; s->p = p; s->a = a; } return 0; } void min_heap_shift_up_(min_heap_t* s, unsigned hole_index, struct event* e) { unsigned parent = (hole_index - 1) / 2; while(hole_index && min_heap_elem_greater(s->p[parent], e)) { (s->p[hole_index] = s->p[parent])->min_heap_idx = hole_index; hole_index = parent; parent = (hole_index - 1) / 2; } (s->p[hole_index] = e)->min_heap_idx = hole_index; } void min_heap_shift_down_(min_heap_t* s, unsigned hole_index, struct event* e) { unsigned min_child = 2 * (hole_index + 1); while(min_child <= s->n) { min_child -= min_child == s->n || min_heap_elem_greater(s->p[min_child], s->p[min_child - 1]); if(!(min_heap_elem_greater(e, s->p[min_child]))) break; (s->p[hole_index] = s->p[min_child])->min_heap_idx = hole_index; hole_index = min_child; min_child = 2 * (hole_index + 1); } min_heap_shift_up_(s, hole_index, e); } #endif /* _MIN_HEAP_H_ */