/* * Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana * University Research and Technology * Corporation. All rights reserved. * Copyright (c) 2004-2008 The University of Tennessee and The University * of Tennessee Research Foundation. All rights * reserved. * Copyright (c) 2004-2007 High Performance Computing Center Stuttgart, * University of Stuttgart. All rights reserved. * Copyright (c) 2004-2005 The Regents of the University of California. * All rights reserved. * Copyright (c) 2006-2007 Voltaire. All rights reserved. * $COPYRIGHT$ * * Additional copyrights may follow * * $HEADER$ */ #include "ompi_config.h" #include #include #include #include #include #include #include "opal/threads/mutex.h" #include "ompi/datatype/convertor.h" #include "opal/sys/atomic.h" #include "orte/util/show_help.h" #include "opal/util/if.h" #include "opal/mca/carto/carto.h" #include "opal/mca/carto/base/base.h" #include "opal/mca/paffinity/base/base.h" #include "opal/mca/maffinity/base/base.h" #include "orte/util/proc_info.h" #include "opal/util/printf.h" #include "ompi/class/ompi_fifo.h" #include "ompi/class/ompi_free_list.h" #include "ompi/mca/pml/pml.h" #include "ompi/mca/btl/btl.h" #include "ompi/mca/mpool/base/base.h" #include "ompi/mca/common/sm/common_sm_mmap.h" #include "ompi/mca/mpool/sm/mpool_sm.h" #if OPAL_ENABLE_FT == 1 #include "opal/mca/crs/base/base.h" #include "ompi/runtime/ompi_cr.h" #endif #include "btl_sm.h" #include "btl_sm_endpoint.h" #include "btl_sm_frag.h" #include "btl_sm_fifo.h" #include "ompi/proc/proc.h" mca_btl_sm_t mca_btl_sm = { { &mca_btl_sm_component.super, 0, /* btl_eager_limit */ 0, /* btl_rndv_eager_limit */ 0, /* btl_max_send_size */ 0, /* btl_rdma_pipeline_send_length */ 0, /* btl_rdma_pipeline_frag_size */ 0, /* btl_min_rdma_pipeline_size */ 0, /* btl_exclusivity */ 0, /* btl_latency */ 0, /* btl_bandwidth */ 0, /* btl flags */ mca_btl_sm_add_procs, mca_btl_sm_del_procs, NULL, mca_btl_sm_finalize, mca_btl_sm_alloc, mca_btl_sm_free, mca_btl_sm_prepare_src, NULL, mca_btl_sm_send, NULL /*mca_btl_sm_sendi*/, /* send immediate */ NULL, /* put */ NULL, /* get */ mca_btl_base_dump, NULL, /* mpool */ mca_btl_sm_register_error_cb, /* register error */ mca_btl_sm_ft_event } }; /* * calculate offset of an address from the beginning of a shared memory segment */ #define ADDR2OFFSET(ADDR, BASE) ((char*)(ADDR) - (char*)(BASE)) /* * calculate an absolute address in a local address space given an offset and * a base address of a shared memory segment */ #define OFFSET2ADDR(OFFSET, BASE) ((ptrdiff_t)(OFFSET) + (char*)(BASE)) static void *mpool_calloc(size_t nmemb, size_t size) { void *buf; size_t bsize = nmemb * size; mca_mpool_base_module_t *mpool = mca_btl_sm_component.sm_mpool; buf = mpool->mpool_alloc(mpool, bsize, CACHE_LINE_SIZE, 0, NULL); if (NULL == buf) return NULL; memset(buf, 0, bsize); return buf; } static int init_fifos(ompi_fifo_t *f, int n) { int j; for(j=0; j < n; j++) { f[j].head = (ompi_cb_fifo_wrapper_t*)OMPI_CB_FREE; f[j].tail = (ompi_cb_fifo_wrapper_t*)OMPI_CB_FREE; if(opal_using_threads()) { char *buf = (char *) mpool_calloc(2, CACHE_LINE_SIZE); /* allocate head and tail locks on different cache lines */ if(NULL == buf) return OMPI_ERROR; f[j].head_lock = (opal_atomic_lock_t*)buf; f[j].tail_lock = (opal_atomic_lock_t*)(buf + CACHE_LINE_SIZE); opal_atomic_init(f[j].head_lock, OPAL_ATOMIC_UNLOCKED); opal_atomic_init(f[j].tail_lock, OPAL_ATOMIC_UNLOCKED); } else { f[j].head_lock = NULL; f[j].tail_lock = NULL; } } return OMPI_SUCCESS; } static void init_maffinity(int *my_mem_node, int *max_mem_node) { static opal_carto_graph_t *topo; opal_value_array_t dists; int i, num_core, socket; opal_paffinity_base_cpu_set_t cpus; char *myslot = NULL; opal_carto_node_distance_t *dist; opal_carto_base_node_t *slot_node; *my_mem_node = 0; *max_mem_node = 1; if(opal_carto_base_get_host_graph(&topo, "Memory") != OMPI_SUCCESS) return; OBJ_CONSTRUCT(&dists, opal_value_array_t); opal_value_array_init(&dists, sizeof(opal_carto_node_distance_t)); if(opal_paffinity_base_get_processor_info(&num_core) != OMPI_SUCCESS) { num_core = 100; /* set something large */ } OPAL_PAFFINITY_CPU_ZERO(cpus); opal_paffinity_base_get(&cpus); /* find core we are running on */ for(i = 0; i < num_core; i++) if(OPAL_PAFFINITY_CPU_ISSET(i, cpus)) break; if (OMPI_SUCCESS != opal_paffinity_base_get_map_to_socket_core(i, &socket, &i)) { /* no topology info available */ goto out; } asprintf(&myslot, "slot%d", socket); slot_node = opal_carto_base_find_node(topo, myslot); if(NULL == slot_node) goto out; opal_carto_base_get_nodes_distance(topo, slot_node, "Memory", &dists); if((*max_mem_node = opal_value_array_get_size(&dists)) < 2) goto out; dist = (opal_carto_node_distance_t *) opal_value_array_get_item(&dists, 0); opal_maffinity_base_node_name_to_id(dist->node->node_name, my_mem_node); out: if(myslot) free(myslot); OBJ_DESTRUCT(&dists); opal_carto_base_free_graph(topo); } static int sm_btl_first_time_init(mca_btl_sm_t *sm_btl, int n) { size_t size, length, length_payload; char *sm_ctl_file; ompi_fifo_t *my_fifos; int my_mem_node=-1, num_mem_nodes=-1, i; init_maffinity(&my_mem_node, &num_mem_nodes); mca_btl_sm_component.mem_node = my_mem_node; mca_btl_sm_component.num_mem_nodes = num_mem_nodes; /* lookup shared memory pool */ mca_btl_sm_component.sm_mpools = (mca_mpool_base_module_t **) calloc(num_mem_nodes, sizeof(mca_mpool_base_module_t*)); /* create mpool for each memory node */ for(i = 0; i < num_mem_nodes; i++) { mca_mpool_base_resources_t res; /* disable memory binding if there is only one memory node */ res.mem_node = (num_mem_nodes == 1) ? -1 : i; mca_btl_sm_component.sm_mpools[i] = mca_mpool_base_module_create(mca_btl_sm_component.sm_mpool_name, sm_btl, &res); /* Sanity check to ensure that we found it */ if(NULL == mca_btl_sm_component.sm_mpools[i]) return OMPI_ERR_OUT_OF_RESOURCE; if(i == my_mem_node) mca_btl_sm_component.sm_mpool = mca_btl_sm_component.sm_mpools[i]; } mca_btl_sm_component.sm_mpool_base = mca_btl_sm_component.sm_mpools[0]->mpool_base(mca_btl_sm_component.sm_mpools[0]); /* set the shared memory offset */ mca_btl_sm_component.sm_offset = (ptrdiff_t*)calloc(n, sizeof(ptrdiff_t)); if(NULL == mca_btl_sm_component.sm_offset) return OMPI_ERR_OUT_OF_RESOURCE; /* create a list of peers */ mca_btl_sm_component.sm_peers = (struct mca_btl_base_endpoint_t**) calloc(n, sizeof(struct mca_btl_base_endpoint_t*)); if(NULL == mca_btl_sm_component.sm_peers) return OMPI_ERR_OUT_OF_RESOURCE; /* Allocate Shared Memory BTL process coordination * data structure. This will reside in shared memory */ /* set file name */ if(asprintf(&sm_ctl_file, "%s"OPAL_PATH_SEP"shared_mem_btl_module.%s", orte_process_info.job_session_dir, orte_process_info.nodename) < 0) return OMPI_ERR_OUT_OF_RESOURCE; /* Pass in a data segment alignment of 0 to get no data segment (only the shared control structure) */ size = sizeof(mca_common_sm_file_header_t) + n * (sizeof(ompi_fifo_t*) + sizeof(char *) + sizeof(uint16_t)) + CACHE_LINE_SIZE; if(!(mca_btl_sm_component.mmap_file = mca_common_sm_mmap_init(size, sm_ctl_file, sizeof(mca_common_sm_file_header_t), CACHE_LINE_SIZE))) { opal_output(0, "mca_btl_sm_add_procs: unable to create shared memory " "BTL coordinating strucure :: size %lu \n", (unsigned long)size); free(sm_ctl_file); return OMPI_ERROR; } free(sm_ctl_file); /* set the pointer to the shared memory control structure */ mca_btl_sm_component.sm_ctl_header = (mca_common_sm_file_header_t*)mca_btl_sm_component.mmap_file->map_seg; /* check to make sure number of local procs is within the * specified limits */ if(mca_btl_sm_component.sm_max_procs > 0 && mca_btl_sm_component.num_smp_procs + n > mca_btl_sm_component.sm_max_procs) { return OMPI_ERROR; } mca_btl_sm_component.shm_fifo = (ompi_fifo_t **)mca_btl_sm_component.mmap_file->data_addr; mca_btl_sm_component.shm_bases = (char**)(mca_btl_sm_component.shm_fifo + n); mca_btl_sm_component.shm_mem_nodes = (uint16_t*)(mca_btl_sm_component.shm_bases + n); /* Sync with other local procs. (Do we have to?) */ if(0 == mca_btl_sm_component.my_smp_rank) { mca_btl_sm_component.mmap_file->map_seg->seg_inited = true; /* memory barrier to ensure this flag is set before other * flags are set */ opal_atomic_wmb(); } else { while(!mca_btl_sm_component.mmap_file->map_seg->seg_inited) { opal_atomic_rmb(); opal_progress(); } } /* set the base of the shared memory segment */ mca_btl_sm_component.shm_bases[mca_btl_sm_component.my_smp_rank] = (char*)mca_btl_sm_component.sm_mpool_base; mca_btl_sm_component.shm_mem_nodes[mca_btl_sm_component.my_smp_rank] = (uint16_t)my_mem_node; /* * initialize the array of fifo's "owned" by this process * The virtual addresses are valid only in the sender's * address space - unless the base of the shared memory * segment is mapped at the same location in the reader's * virtual address space. */ if(NULL == (my_fifos = (ompi_fifo_t*)mpool_calloc(n, sizeof(ompi_fifo_t)))) return OMPI_ERR_OUT_OF_RESOURCE; if(init_fifos(my_fifos, n) != OMPI_SUCCESS) return OMPI_ERR_OUT_OF_RESOURCE; mca_btl_sm_component.shm_fifo[mca_btl_sm_component.my_smp_rank] = my_fifos; opal_atomic_wmb(); /* cache the pointer to the 2d fifo array. These addresses * are valid in the current process space */ mca_btl_sm_component.fifo = (ompi_fifo_t**)malloc(sizeof(ompi_fifo_t*) * n); if(NULL == mca_btl_sm_component.fifo) return OMPI_ERR_OUT_OF_RESOURCE; mca_btl_sm_component.fifo[mca_btl_sm_component.my_smp_rank] = my_fifos; mca_btl_sm_component.mem_nodes = (uint16_t *) malloc(sizeof(uint16_t) * n); if(NULL == mca_btl_sm_component.mem_nodes) return OMPI_ERR_OUT_OF_RESOURCE; /* initialize fragment descriptor free lists */ /* allocation will be for the fragment descriptor and payload buffer */ length = sizeof(mca_btl_sm_frag1_t); length_payload = sizeof(mca_btl_sm_hdr_t) + mca_btl_sm_component.eager_limit; ompi_free_list_init_new(&mca_btl_sm_component.sm_frags_eager, length, CACHE_LINE_SIZE, OBJ_CLASS(mca_btl_sm_frag1_t), length_payload, CACHE_LINE_SIZE, mca_btl_sm_component.sm_free_list_num, mca_btl_sm_component.sm_free_list_max, mca_btl_sm_component.sm_free_list_inc, mca_btl_sm_component.sm_mpool); length = sizeof(mca_btl_sm_frag2_t); length_payload = sizeof(mca_btl_sm_hdr_t) + mca_btl_sm_component.max_frag_size; ompi_free_list_init_new(&mca_btl_sm_component.sm_frags_max, length, CACHE_LINE_SIZE, OBJ_CLASS(mca_btl_sm_frag2_t), length_payload, CACHE_LINE_SIZE, mca_btl_sm_component.sm_free_list_num, mca_btl_sm_component.sm_free_list_max, mca_btl_sm_component.sm_free_list_inc, mca_btl_sm_component.sm_mpool); opal_free_list_init(&mca_btl_sm_component.pending_send_fl, sizeof(btl_sm_pending_send_item_t), OBJ_CLASS(opal_free_list_item_t), 16, -1, 32); /* set flag indicating btl has been inited */ sm_btl->btl_inited = true; return OMPI_SUCCESS; } static struct mca_btl_base_endpoint_t * create_sm_endpoint(int local_proc, struct ompi_proc_t *proc) { struct mca_btl_base_endpoint_t *ep; #if OMPI_ENABLE_PROGRESS_THREADS == 1 char path[PATH_MAX]; #endif ep = (struct mca_btl_base_endpoint_t*) malloc(sizeof(struct mca_btl_base_endpoint_t)); if(NULL == ep) return NULL; ep->peer_smp_rank = local_proc + mca_btl_sm_component.num_smp_procs; OBJ_CONSTRUCT(&ep->pending_sends, opal_list_t); #if OMPI_ENABLE_PROGRESS_THREADS == 1 sprintf(path, "%s"OPAL_PATH_SEP"sm_fifo.%lu", orte_process_info.job_session_dir, (unsigned long)proc->proc_name.vpid); ep->fifo_fd = open(path, O_WRONLY); if(ep->fifo_fd < 0) { opal_output(0, "mca_btl_sm_add_procs: open(%s) failed with errno=%d\n", path, errno); free(ep); return NULL; } #endif return ep; } static void calc_sm_max_procs(int n) { /* see if need to allocate space for extra procs */ if(0 > mca_btl_sm_component.sm_max_procs) { /* no limit */ if(0 <= mca_btl_sm_component.sm_extra_procs) { /* limit */ mca_btl_sm_component.sm_max_procs = n + mca_btl_sm_component.sm_extra_procs; } else { /* no limit */ mca_btl_sm_component.sm_max_procs = 2 * n; } } } int mca_btl_sm_add_procs( struct mca_btl_base_module_t* btl, size_t nprocs, struct ompi_proc_t **procs, struct mca_btl_base_endpoint_t **peers, ompi_bitmap_t* reachability) { int return_code = OMPI_SUCCESS; int32_t n_local_procs = 0, proc, j, my_smp_rank = mca_btl_sm_component.my_smp_rank; ompi_proc_t* my_proc; /* pointer to caller's proc structure */ mca_btl_sm_t *sm_btl; bool have_connected_peer = false; char **bases; /* initializion */ sm_btl = (mca_btl_sm_t *)btl; /* get pointer to my proc structure */ if(NULL == (my_proc = ompi_proc_local())) return OMPI_ERR_OUT_OF_RESOURCE; /* Get unique host identifier for each process in the list, * and idetify procs that are on this host. Add procs on this * host to shared memory reachbility list. Also, get number * of local procs in the procs list. */ for(proc = 0; proc < (int32_t)nprocs; proc++) { /* check to see if this proc can be reached via shmem (i.e., if they're on my local host and in my job) */ if (procs[proc]->proc_name.jobid != my_proc->proc_name.jobid || 0 == (procs[proc]->proc_flags & OMPI_PROC_FLAG_LOCAL)) { peers[proc] = NULL; continue; } /* check to see if this is me */ if(my_proc == procs[proc]) { my_smp_rank = mca_btl_sm_component.my_smp_rank = n_local_procs++; continue; } /* we have someone to talk to */ have_connected_peer = true; if(!(peers[proc] = create_sm_endpoint(n_local_procs, procs[proc]))) { return_code = OMPI_ERROR; goto CLEANUP; } n_local_procs++; /* add this proc to shared memory accessibility list */ return_code = ompi_bitmap_set_bit(reachability, proc); if(OMPI_SUCCESS != return_code) goto CLEANUP; } /* jump out if there's not someone we can talk to */ if (!have_connected_peer) goto CLEANUP; /* make sure that my_smp_rank has been defined */ if(-1 == my_smp_rank) { return_code = OMPI_ERROR; goto CLEANUP; } calc_sm_max_procs(n_local_procs); if (!sm_btl->btl_inited) { return_code = sm_btl_first_time_init(sm_btl, mca_btl_sm_component.sm_max_procs); if(return_code != OMPI_SUCCESS) goto CLEANUP; } /* set local proc's smp rank in the peers structure for * rapid access and calulcate reachebility */ for(proc = 0; proc < (int32_t)nprocs; proc++) { if(NULL == peers[proc]) continue; mca_btl_sm_component.sm_peers[peers[proc]->peer_smp_rank] = peers[proc]; peers[proc]->my_smp_rank = my_smp_rank; } bases = mca_btl_sm_component.shm_bases; for(j = mca_btl_sm_component.num_smp_procs; j < mca_btl_sm_component.num_smp_procs + n_local_procs; j++) { ptrdiff_t diff; int peer_mem_node; if(j == my_smp_rank) continue; /* spin until this element is allocated */ while(NULL == mca_btl_sm_component.shm_fifo[j]) { opal_atomic_rmb(); opal_progress(); } /* Calculate the difference as (my_base - their_base) */ diff = ADDR2OFFSET(bases[my_smp_rank], bases[j]); mca_btl_sm_component.sm_offset[j] = diff; /* store local address of remote fifos */ mca_btl_sm_component.fifo[j] = (ompi_fifo_t*)OFFSET2ADDR(diff, mca_btl_sm_component.shm_fifo[j]); /* don't forget to update the head_lock if allocated because this * address is also in the remote process */ if(mca_btl_sm_component.fifo[j][my_smp_rank].head_lock != NULL) { mca_btl_sm_component.fifo[j][my_smp_rank].head_lock = (opal_atomic_lock_t*)OFFSET2ADDR(diff, mca_btl_sm_component.fifo[j][my_smp_rank].head_lock); } /* cache local copy of peer memory node number */ peer_mem_node = mca_btl_sm_component.mem_nodes[j] = mca_btl_sm_component.shm_mem_nodes[j]; /* Initialize fifo for use. Note that sender does initialization */ return_code = ompi_fifo_init(mca_btl_sm_component.size_of_cb_queue, mca_btl_sm_component.cb_lazy_free_freq, mca_btl_sm_component.cb_max_num, /* fifo mpool */ mca_btl_sm_component.sm_mpools[peer_mem_node], /* head mpool */ mca_btl_sm_component.sm_mpool, /* tail mpool */ mca_btl_sm_component.sm_mpools[peer_mem_node], &mca_btl_sm_component.fifo[j][my_smp_rank], mca_btl_sm_component.sm_offset[j]); if(return_code != OMPI_SUCCESS) goto CLEANUP; } /* update the local smp process count */ mca_btl_sm_component.num_smp_procs += n_local_procs; /* make sure we have enough eager fragmnents for each process */ return_code = ompi_free_list_resize(&mca_btl_sm_component.sm_frags_eager, mca_btl_sm_component.num_smp_procs * 2); if (OMPI_SUCCESS != return_code) goto CLEANUP; CLEANUP: return return_code; } int mca_btl_sm_del_procs( struct mca_btl_base_module_t* btl, size_t nprocs, struct ompi_proc_t **procs, struct mca_btl_base_endpoint_t **peers) { return OMPI_SUCCESS; } /** * MCA->BTL Clean up any resources held by BTL module * before the module is unloaded. * * @param btl (IN) BTL module. * * Prior to unloading a BTL module, the MCA framework will call * the BTL finalize method of the module. Any resources held by * the BTL should be released and if required the memory corresponding * to the BTL module freed. * */ int mca_btl_sm_finalize(struct mca_btl_base_module_t* btl) { return OMPI_SUCCESS; } /* * Register callback function for error handling.. */ int mca_btl_sm_register_error_cb( struct mca_btl_base_module_t* btl, mca_btl_base_module_error_cb_fn_t cbfunc) { mca_btl_sm_t *sm_btl = (mca_btl_sm_t *)btl; sm_btl->error_cb = cbfunc; return OMPI_SUCCESS; } /** * Allocate a segment. * * @param btl (IN) BTL module * @param size (IN) Request segment size. */ extern mca_btl_base_descriptor_t* mca_btl_sm_alloc( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, uint8_t order, size_t size, uint32_t flags) { mca_btl_sm_frag_t* frag = NULL; int rc; if(size <= mca_btl_sm_component.eager_limit) { MCA_BTL_SM_FRAG_ALLOC_EAGER(frag,rc); } else if (size <= mca_btl_sm_component.max_frag_size) { MCA_BTL_SM_FRAG_ALLOC_MAX(frag,rc); } if (OPAL_LIKELY(frag != NULL)) { frag->segment.seg_len = size; frag->base.des_flags = flags; } return (mca_btl_base_descriptor_t*)frag; } /** * Return a segment allocated by this BTL. * * @param btl (IN) BTL module * @param segment (IN) Allocated segment. */ extern int mca_btl_sm_free( struct mca_btl_base_module_t* btl, mca_btl_base_descriptor_t* des) { mca_btl_sm_frag_t* frag = (mca_btl_sm_frag_t*)des; MCA_BTL_SM_FRAG_RETURN(frag); return OMPI_SUCCESS; } /** * Pack data * * @param btl (IN) BTL module */ struct mca_btl_base_descriptor_t* mca_btl_sm_prepare_src( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, mca_mpool_base_registration_t* registration, struct ompi_convertor_t* convertor, uint8_t order, size_t reserve, size_t* size, uint32_t flags) { mca_btl_sm_frag_t* frag; struct iovec iov; uint32_t iov_count = 1; size_t max_data = *size; int rc; MCA_BTL_SM_FRAG_ALLOC_MAX(frag, rc); if(OPAL_UNLIKELY(NULL == frag)) { return NULL; } if(reserve + max_data > frag->size) { max_data = frag->size - reserve; } iov.iov_len = max_data; iov.iov_base = (IOVBASE_TYPE*)(((unsigned char*)(frag->segment.seg_addr.pval)) + reserve); rc = ompi_convertor_pack(convertor, &iov, &iov_count, &max_data ); if(rc < 0) { MCA_BTL_SM_FRAG_RETURN(frag); return NULL; } frag->segment.seg_len = reserve + max_data; frag->base.des_flags = flags; *size = max_data; return &frag->base; } #if 0 #define MCA_BTL_SM_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(sm_frag) \ do { \ char* _memory = (char*)(sm_frag)->segment.seg_addr.pval + \ (sm_frag)->segment.seg_len; \ int* _intmem; \ size_t align = (intptr_t)_memory & 0xFUL; \ switch( align & 0x3 ) { \ case 3: *_memory = 0; _memory++; \ case 2: *_memory = 0; _memory++; \ case 1: *_memory = 0; _memory++; \ } \ align >>= 2; \ _intmem = (int*)_memory; \ switch( align ) { \ case 3: *_intmem = 0; _intmem++; \ case 2: *_intmem = 0; _intmem++; \ case 1: *_intmem = 0; _intmem++; \ } \ } while(0) #else #define MCA_BTL_SM_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(sm_frag) #endif #if 0 if( OPAL_LIKELY(align > 0) ) { \ align = 0xFUL - align; \ memset( _memory, 0, align ); \ } \ #endif /** * Initiate an inline send to the peer. If failure then return a descriptor. * * @param btl (IN) BTL module * @param peer (IN) BTL peer addressing */ int mca_btl_sm_sendi( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, struct ompi_convertor_t* convertor, void* header, size_t header_size, size_t payload_size, uint8_t order, uint32_t flags, mca_btl_base_tag_t tag, mca_btl_base_descriptor_t** descriptor ) { size_t max_data, length = (header_size + payload_size); mca_btl_sm_frag_t* frag; int rc; if( length < mca_btl_sm_component.eager_limit ) { MCA_BTL_SM_FRAG_ALLOC_EAGER(frag, rc); if( OPAL_UNLIKELY(NULL == frag) ) { *descriptor = NULL; return rc; } frag->segment.seg_len = length; frag->hdr->len = length; assert( 0 == (flags & MCA_BTL_DES_SEND_ALWAYS_CALLBACK) ); frag->base.des_flags = flags | MCA_BTL_DES_FLAGS_BTL_OWNERSHIP; frag->hdr->tag = tag; frag->endpoint = endpoint; memcpy( frag->segment.seg_addr.pval, header, header_size ); if( payload_size ) { struct iovec iov; uint32_t iov_count; /* pack the data into the supplied buffer */ iov.iov_base = (IOVBASE_TYPE*)((unsigned char*)frag->segment.seg_addr.pval + header_size); iov.iov_len = max_data = payload_size; iov_count = 1; (void)ompi_convertor_pack( convertor, &iov, &iov_count, &max_data); assert(max_data == payload_size); } MCA_BTL_SM_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(frag); /* * post the descriptor in the queue - post with the relative * address */ MCA_BTL_SM_FIFO_WRITE(endpoint, endpoint->my_smp_rank, endpoint->peer_smp_rank, frag->hdr, false, rc); return rc; } *descriptor = mca_btl_sm_alloc( btl, endpoint, order, payload_size + header_size, flags); return OMPI_ERR_RESOURCE_BUSY; } /** * Initiate a send to the peer. * * @param btl (IN) BTL module * @param peer (IN) BTL peer addressing */ int mca_btl_sm_send( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, struct mca_btl_base_descriptor_t* descriptor, mca_btl_base_tag_t tag ) { mca_btl_sm_frag_t* frag = (mca_btl_sm_frag_t*)descriptor; int rc; /* available header space */ frag->hdr->len = frag->segment.seg_len; /* type of message, pt-2-pt, one-sided, etc */ frag->hdr->tag = tag; MCA_BTL_SM_TOUCH_DATA_TILL_CACHELINE_BOUNDARY(frag); frag->endpoint = endpoint; /* * post the descriptor in the queue - post with the relative * address */ MCA_BTL_SM_FIFO_WRITE(endpoint, endpoint->my_smp_rank, endpoint->peer_smp_rank, frag->hdr, false, rc); if( OPAL_LIKELY(0 == rc) ) { return 1; /* the data is completely gone */ } frag->base.des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK; /* not yet gone, but pending. Let the upper level knows that * the callback will be triggered when the data will be sent. */ return 0; } #if OPAL_ENABLE_FT == 0 int mca_btl_sm_ft_event(int state) { return OMPI_SUCCESS; } #else int mca_btl_sm_ft_event(int state) { /* Notify mpool */ if( NULL != mca_btl_sm_component.sm_mpool && NULL != mca_btl_sm_component.sm_mpool->mpool_ft_event) { mca_btl_sm_component.sm_mpool->mpool_ft_event(state); } if(OPAL_CRS_CHECKPOINT == state) { if( NULL != mca_btl_sm_component.mmap_file ) { /* On restart we need the old file names to exist (not necessarily * contain content) so the CRS component does not fail when searching * for these old file handles. The restart procedure will make sure * these files get cleaned up appropriately. */ opal_crs_base_metadata_write_token(NULL, CRS_METADATA_TOUCH, mca_btl_sm_component.mmap_file->map_path); /* Record the job session directory */ opal_crs_base_metadata_write_token(NULL, CRS_METADATA_MKDIR, orte_process_info.job_session_dir); } } else if(OPAL_CRS_CONTINUE == state) { if( ompi_cr_continue_like_restart ) { if( NULL != mca_btl_sm_component.mmap_file ) { /* Do not Add session directory on continue */ /* Add shared memory file */ opal_crs_base_cleanup_append(mca_btl_sm_component.mmap_file->map_path, false); } /* Clear this so we force the module to re-init the sm files */ mca_btl_sm_component.sm_mpool = NULL; } } else if(OPAL_CRS_RESTART == state || OPAL_CRS_RESTART_PRE == state) { if( NULL != mca_btl_sm_component.mmap_file ) { /* Add session directory */ opal_crs_base_cleanup_append(orte_process_info.job_session_dir, true); /* Add shared memory file */ opal_crs_base_cleanup_append(mca_btl_sm_component.mmap_file->map_path, false); } /* Clear this so we force the module to re-init the sm files */ mca_btl_sm_component.sm_mpool = NULL; } else if(OPAL_CRS_TERM == state ) { ; } else { ; } return OMPI_SUCCESS; } #endif /* OPAL_ENABLE_FT */