/* * Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana * University Research and Technology * Corporation. All rights reserved. * Copyright (c) 2004-2007 The University of Tennessee and The University * of Tennessee Research Foundation. All rights * reserved. * Copyright (c) 2004-2005 High Performance Computing Center Stuttgart, * University of Stuttgart. All rights reserved. * Copyright (c) 2004-2005 The Regents of the University of California. * All rights reserved. * $COPYRIGHT$ * * Additional copyrights may follow * * $HEADER$ */ #include "ompi_config.h" #include "opal/util/if.h" #include "btl_mx.h" #include "btl_mx_frag.h" #include "btl_mx_proc.h" #include "btl_mx_endpoint.h" #include "ompi/datatype/convertor.h" #include "opal/prefetch.h" /** * */ int mca_btl_mx_add_procs( struct mca_btl_base_module_t* btl, size_t nprocs, struct ompi_proc_t** ompi_procs, struct mca_btl_base_endpoint_t** peers, ompi_bitmap_t* reachable ) { mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*)btl; int i, rc; for( i = 0; i < (int) nprocs; i++ ) { struct ompi_proc_t* ompi_proc = ompi_procs[i]; mca_btl_mx_proc_t* mx_proc; mca_btl_base_endpoint_t* mx_endpoint; /** * By default don't allow communications with self nor with any * other processes on the same node. The BTL self and sm are * supposed to take care of such communications. */ if( ompi_procs[i]->proc_flags & OMPI_PROC_FLAG_LOCAL ) { if( ompi_procs[i] == ompi_proc_local_proc ) { if( 0 == mca_btl_mx_component.mx_support_self ) continue; } else { if( 0 == mca_btl_mx_component.mx_support_sharedmem ) continue; } } if( NULL == (mx_proc = mca_btl_mx_proc_create(ompi_proc)) ) { continue; } OPAL_THREAD_LOCK(&mx_proc->proc_lock); /* The btl_proc datastructure is shared by all MX BTL * instances that are trying to reach this destination. * Cache the peer instance on the btl_proc. */ mx_endpoint = OBJ_NEW(mca_btl_mx_endpoint_t); if(NULL == mx_endpoint) { OPAL_THREAD_UNLOCK(&mx_proc->proc_lock); return OMPI_ERR_OUT_OF_RESOURCE; } mx_endpoint->endpoint_btl = mx_btl; rc = mca_btl_mx_proc_insert( mx_proc, mx_endpoint ); if( rc != OMPI_SUCCESS ) { OBJ_RELEASE(mx_endpoint); OBJ_RELEASE(mx_proc); OPAL_THREAD_UNLOCK(&mx_proc->proc_lock); continue; } ompi_bitmap_set_bit(reachable, i); OPAL_THREAD_UNLOCK(&mx_proc->proc_lock); peers[i] = mx_endpoint; } return OMPI_SUCCESS; } int mca_btl_mx_del_procs( struct mca_btl_base_module_t* btl, size_t nprocs, struct ompi_proc_t** procs, struct mca_btl_base_endpoint_t** peers ) { opal_output( 0, "MX BTL delete procs\n" ); /* TODO */ return OMPI_SUCCESS; } /** * Register callback function to support send/recv semantics */ int mca_btl_mx_register( struct mca_btl_base_module_t* btl, mca_btl_base_tag_t tag, mca_btl_base_module_recv_cb_fn_t cbfunc, void* cbdata ) { mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*) btl; mx_btl->mx_reg[tag].cbfunc = cbfunc; mx_btl->mx_reg[tag].cbdata = cbdata; if( (NULL != cbfunc) && ( 0 == mca_btl_mx_component.mx_use_unexpected) ) { mca_btl_mx_frag_t* frag; mx_return_t mx_return; mx_segment_t mx_segment; int i, rc; /* Post the receives if there is no unexpected handler */ for( i = 0; i < mca_btl_mx_component.mx_max_posted_recv; i++ ) { MCA_BTL_MX_FRAG_ALLOC_EAGER( mx_btl, frag, rc ); if( NULL == frag ) { opal_output( 0, "mca_btl_mx_register: unable to allocate more eager fragments\n" ); if( 0 == i ) { return OMPI_ERROR; } break; /* some fragments are already registered. Try to continue... */ } frag->base.des_dst = frag->segment; frag->base.des_dst_cnt = 1; frag->base.des_src = NULL; frag->base.des_src_cnt = 0; frag->mx_frag_list = NULL; frag->tag = tag; mx_segment.segment_ptr = (void*)(frag+1); mx_segment.segment_length = mx_btl->super.btl_eager_limit; mx_return = mx_irecv( mx_btl->mx_endpoint, &mx_segment, 1, (uint64_t)tag, BTL_MX_RECV_MASK, frag, &(frag->mx_request) ); if( MX_SUCCESS != mx_return ) { opal_output( 0, "mca_btl_mx_register: mx_irecv failed with status %d (%s)\n", mx_return, mx_strerror(mx_return) ); MCA_BTL_MX_FRAG_RETURN( mx_btl, frag ); return OMPI_ERROR; } } } return OMPI_SUCCESS; } /** * Allocate a segment. * * @param btl (IN) BTL module * @param size (IN) Request segment size. */ mca_btl_base_descriptor_t* mca_btl_mx_alloc( struct mca_btl_base_module_t* btl, uint8_t order, size_t size ) { mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*) btl; mca_btl_mx_frag_t* frag; int rc; MCA_BTL_MX_FRAG_ALLOC_EAGER(mx_btl, frag, rc); if( OPAL_UNLIKELY(NULL == frag) ) { return NULL; } frag->segment[0].seg_len = size <= mx_btl->super.btl_eager_limit ? size : mx_btl->super.btl_eager_limit ; frag->segment[0].seg_addr.pval = (void*)(frag+1); frag->base.des_src = frag->segment; frag->base.des_src_cnt = 1; frag->base.des_flags = 0; frag->base.order = MCA_BTL_NO_ORDER; return (mca_btl_base_descriptor_t*)frag; } /** * Return a segment */ int mca_btl_mx_free( struct mca_btl_base_module_t* btl, mca_btl_base_descriptor_t* des ) { mca_btl_mx_frag_t* frag = (mca_btl_mx_frag_t*)des; assert( 0xff == frag->tag ); MCA_BTL_MX_FRAG_RETURN(btl, frag); return OMPI_SUCCESS; } /** * Pack data and return a descriptor that can be * used for send/put. * * @param btl (IN) BTL module * @param peer (IN) BTL peer addressing */ mca_btl_base_descriptor_t* mca_btl_mx_prepare_src( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, struct mca_mpool_base_registration_t* registration, struct ompi_convertor_t* convertor, uint8_t order, size_t reserve, size_t* size ) { mca_btl_mx_frag_t* frag; struct iovec iov; uint32_t iov_count = 1; size_t max_data; int rc; max_data = btl->btl_eager_limit - reserve; if( (*size) < max_data ) { max_data = *size; } /* If the data is contiguous we can use directly the pointer * to the user memory. */ if( 0 == ompi_convertor_need_buffers(convertor) ) { /** * let the convertor figure out the correct pointer depending * on the data layout */ iov.iov_base = NULL; if( 0 == reserve ) { MCA_BTL_MX_FRAG_ALLOC_USER(btl, frag, rc); if( OPAL_UNLIKELY(NULL == frag) ) { return NULL; } max_data = *size; frag->base.des_src_cnt = 1; } else { MCA_BTL_MX_FRAG_ALLOC_EAGER( mx_btl, frag, rc ); if( OPAL_UNLIKELY(NULL == frag) ) { return NULL; } frag->base.des_src_cnt = 2; } } else { MCA_BTL_MX_FRAG_ALLOC_EAGER( mx_btl, frag, rc ); if( OPAL_UNLIKELY(NULL == frag) ) { return NULL; } frag->base.des_src_cnt = 1; iov.iov_base = (void*)((unsigned char*)frag->segment[0].seg_addr.pval + reserve); } iov.iov_len = max_data; (void)ompi_convertor_pack(convertor, &iov, &iov_count, &max_data ); *size = max_data; if( 1 == frag->base.des_src_cnt ) { frag->segment[0].seg_len = reserve + max_data; if( 0 == reserve ) frag->segment[0].seg_addr.pval = iov.iov_base; } else { frag->segment[0].seg_len = reserve; frag->segment[1].seg_len = max_data; frag->segment[1].seg_addr.pval = iov.iov_base; } frag->base.des_src = frag->segment; frag->base.order = MCA_BTL_NO_ORDER; return &frag->base; } /** * Prepare a descriptor for send/rdma using the supplied * convertor. If the convertor references data that is contigous, * the descriptor may simply point to the user buffer. Otherwise, * this routine is responsible for allocating buffer space and * packing if required. * * @param btl (IN) BTL module * @param endpoint (IN) BTL peer addressing * @param convertor (IN) Data type convertor * @param reserve (IN) Additional bytes requested by upper layer to precede user data * @param size (IN/OUT) Number of bytes to prepare (IN), number of bytes actually prepared (OUT) */ mca_btl_base_descriptor_t* mca_btl_mx_prepare_dst( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, struct mca_mpool_base_registration_t* registration, struct ompi_convertor_t* convertor, uint8_t order, size_t reserve, size_t* size) { mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*)btl; mca_btl_mx_frag_t* frag; mx_return_t mx_return; mx_segment_t mx_segment; int rc; MCA_BTL_MX_FRAG_ALLOC_USER(btl, frag, rc); if( OPAL_UNLIKELY(NULL == frag) ) { return NULL; } frag->segment[0].seg_len = *size; ompi_convertor_get_current_pointer( convertor, (void**)&(frag->segment[0].seg_addr.pval) ); frag->segment[0].seg_key.key64 = (uint64_t)(intptr_t)frag; mx_segment.segment_ptr = frag->segment[0].seg_addr.pval; mx_segment.segment_length = frag->segment[0].seg_len; mx_return = mx_irecv( mx_btl->mx_endpoint, &mx_segment, 1, frag->segment[0].seg_key.key64, BTL_MX_PUT_MASK, NULL, &(frag->mx_request) ); if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) { opal_output( 0, "Fail to re-register a fragment with the MX NIC ...\n" ); MCA_BTL_MX_FRAG_RETURN( btl, frag ); return NULL; } /* Allow the fragment to be recycled using the mca_btl_mx_free function */ frag->tag = 0xff; frag->base.des_dst = frag->segment; frag->base.des_dst_cnt = 1; frag->base.order = MCA_BTL_NO_ORDER; return &frag->base; } /** * Initiate an asynchronous put. * * @param btl (IN) BTL module * @param endpoint (IN) BTL addressing information * @param descriptor (IN) Description of the data to be transferred */ static int mca_btl_mx_put( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, struct mca_btl_base_descriptor_t* descriptor ) { mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*)btl; mca_btl_mx_frag_t* frag = (mca_btl_mx_frag_t*)descriptor; mx_segment_t mx_segment[2]; mx_return_t mx_return; uint32_t i = 0; if( OPAL_UNLIKELY(MCA_BTL_MX_CONNECTED != ((mca_btl_mx_endpoint_t*)endpoint)->status) ) { if( MCA_BTL_MX_NOT_REACHEABLE == ((mca_btl_mx_endpoint_t*)endpoint)->status ) return OMPI_ERROR; if( MCA_BTL_MX_CONNECTION_PENDING == ((mca_btl_mx_endpoint_t*)endpoint)->status ) return OMPI_ERR_OUT_OF_RESOURCE; if( OMPI_SUCCESS != mca_btl_mx_proc_connect( (mca_btl_mx_endpoint_t*)endpoint ) ) return OMPI_ERROR; } frag->endpoint = endpoint; frag->tag = 0xff; do { mx_segment[i].segment_ptr = descriptor->des_src[i].seg_addr.pval; mx_segment[i].segment_length = descriptor->des_src[i].seg_len; } while (++i < descriptor->des_src_cnt); mx_return = mx_isend( mx_btl->mx_endpoint, mx_segment, descriptor->des_src_cnt, endpoint->mx_peer_addr, descriptor->des_dst[0].seg_key.key64, frag, &frag->mx_request ); if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) { opal_output( 0, "mx_isend fails with error %s\n", mx_strerror(mx_return) ); return OMPI_ERROR; } return OMPI_SUCCESS; } /** * Initiate an asynchronous send. * * @param btl (IN) BTL module * @param endpoint (IN) BTL addressing information * @param descriptor (IN) Description of the data to be transfered * @param tag (IN) The tag value used to notify the peer. */ int mca_btl_mx_send( struct mca_btl_base_module_t* btl, struct mca_btl_base_endpoint_t* endpoint, struct mca_btl_base_descriptor_t* descriptor, mca_btl_base_tag_t tag ) { mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*)btl; mca_btl_mx_frag_t* frag = (mca_btl_mx_frag_t*)descriptor; mx_segment_t mx_segment[2]; mx_return_t mx_return; uint64_t total_length = 0; uint32_t i = 0; if( OPAL_UNLIKELY(MCA_BTL_MX_CONNECTED != ((mca_btl_mx_endpoint_t*)endpoint)->status) ) { if( MCA_BTL_MX_NOT_REACHEABLE == ((mca_btl_mx_endpoint_t*)endpoint)->status ) return OMPI_ERROR; if( MCA_BTL_MX_CONNECTION_PENDING == ((mca_btl_mx_endpoint_t*)endpoint)->status ) return OMPI_ERR_OUT_OF_RESOURCE; if( OMPI_SUCCESS != mca_btl_mx_proc_connect( (mca_btl_mx_endpoint_t*)endpoint ) ) return OMPI_ERROR; } frag->endpoint = endpoint; frag->tag = 0xff; do { mx_segment[i].segment_ptr = descriptor->des_src[i].seg_addr.pval; mx_segment[i].segment_length = descriptor->des_src[i].seg_len; total_length += descriptor->des_src[i].seg_len; } while (++i < descriptor->des_src_cnt); mx_return = mx_isend( mx_btl->mx_endpoint, mx_segment, descriptor->des_src_cnt, endpoint->mx_peer_addr, (uint64_t)tag, frag, &frag->mx_request ); if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) { opal_output( 0, "mx_isend fails with error %s\n", mx_strerror(mx_return) ); return OMPI_ERROR; } #ifdef HAVE_MX_FORGET { uint32_t mx_result; mx_return = mx_ibuffered( mx_btl->mx_endpoint, &(frag->mx_request), &mx_result ); if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) { opal_output( 0, "mx_ibuffered failed with error %d (%s)\n", mx_return, mx_strerror(mx_return) ); return OMPI_ERROR; } if( mx_result ) { mx_return = mx_forget( mx_btl->mx_endpoint, &(frag->mx_request) ); frag->base.des_cbfunc( &(mx_btl->super), frag->endpoint, &(frag->base), OMPI_SUCCESS); if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) { opal_output( 0, "mx_forget failed with error %d (%s)\n", mx_return, mx_strerror(mx_return) ); return OMPI_ERROR; } return OMPI_SUCCESS; } } #endif if( 4096 > total_length ) { mx_status_t mx_status; uint32_t mx_result; /* let's check for completness */ mx_return = mx_test( mx_btl->mx_endpoint, &(frag->mx_request), &mx_status, &mx_result ); if( OPAL_UNLIKELY(MX_SUCCESS != mx_return) ) return OMPI_SUCCESS; /* call the completion callback */ if( mx_result ) { frag->base.des_cbfunc( &(mx_btl->super), frag->endpoint, &(frag->base), OMPI_SUCCESS); return OMPI_SUCCESS; } } return OMPI_SUCCESS; } /* * Cleanup/release module resources. */ int mca_btl_mx_finalize( struct mca_btl_base_module_t* btl ) { mca_btl_mx_module_t* mx_btl = (mca_btl_mx_module_t*) btl; if( NULL != mx_btl->mx_endpoint ) mx_close_endpoint(mx_btl->mx_endpoint); OBJ_DESTRUCT( &mx_btl->mx_lock ); OBJ_DESTRUCT( &mx_btl->mx_peers ); free(mx_btl); return OMPI_SUCCESS; } int mca_btl_mx_ft_event(int state) { if(OPAL_CRS_CHECKPOINT == state) { ; } else if(OPAL_CRS_CONTINUE == state) { ; } else if(OPAL_CRS_RESTART == state) { ; } else if(OPAL_CRS_TERM == state ) { ; } else { ; } return OMPI_SUCCESS; } mca_btl_mx_module_t mca_btl_mx_module = { { &mca_btl_mx_component.super, 0, /* max size of first fragment */ 0, /* min send fragment size */ 0, /* max send fragment size */ 0, /* btl_rdma_pipeline_send_length */ 0, /* btl_rdma_pipeline_frag_size */ 0, /* btl_min_rdma_pipeline_size */ 0, /* exclusivity */ 0, /* latency */ 0, /* bandwidth */ MCA_BTL_FLAGS_SEND_INPLACE | MCA_BTL_FLAGS_PUT, /* flags */ mca_btl_mx_add_procs, mca_btl_mx_del_procs, mca_btl_mx_register, mca_btl_mx_finalize, mca_btl_mx_alloc, mca_btl_mx_free, mca_btl_mx_prepare_src, mca_btl_mx_prepare_dst, mca_btl_mx_send, mca_btl_mx_put, /* put */ NULL, /* get */ mca_btl_base_dump, NULL, /* mpool */ NULL, /* register error */ mca_btl_mx_ft_event } };