/* -*- Mode: C; c-basic-offset:4 ; -*- */
/*
 * Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
 *                         University Research and Technology
 *                         Corporation.  All rights reserved.
 * Copyright (c) 2004-2013 The University of Tennessee and The University
 *                         of Tennessee Research Foundation.  All rights
 *                         reserved.
 * Copyright (c) 2004-2005 High Performance Computing Center Stuttgart, 
 *                         University of Stuttgart.  All rights reserved.
 * Copyright (c) 2004-2005 The Regents of the University of California.
 *                         All rights reserved.
 * Copyright (c) 2008-2013 University of Houston. All rights reserved.
 * Copyright (c) 2011      Cisco Systems, Inc. All rights reserved.
 * Copyright (c) 2012-2013 INRIA.  All rights reserved.
 * $COPYRIGHT$
 * 
 * Additional copyrights may follow
 * 
 * $HEADER$
 */

#include "ompi_config.h"

#include "ompi/runtime/params.h"
#include "ompi/communicator/communicator.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/mca/topo/topo.h"
#include "opal/datatype/opal_convertor.h"
#include "opal/datatype/opal_datatype.h"
#include "ompi/datatype/ompi_datatype.h"
#include "ompi/info/info.h"
#include "ompi/request/request.h"

#include <math.h>
#include <unistd.h>

#ifdef HAVE_SYS_STATFS_H
#include <sys/statfs.h> /* or <sys/vfs.h> */ 
#endif
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#ifdef HAVE_SYS_MOUNT_H
#include <sys/mount.h>
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#include "io_ompio.h"

print_queue *coll_write_time=NULL;
print_queue *coll_read_time=NULL;


int ompi_io_ompio_set_file_defaults (mca_io_ompio_file_t *fh)
{

   if (NULL != fh) {
        ompi_datatype_t *types[2], *default_file_view;
        int blocklen[2] = {1, 1};
        OPAL_PTRDIFF_TYPE d[2], base;
        int i;

        fh->f_io_array = NULL;
        fh->f_perm = OMPIO_PERM_NULL;
        fh->f_flags = 0;
        fh->f_bytes_per_agg = mca_io_ompio_bytes_per_agg;
        fh->f_datarep = strdup ("native");

        fh->f_offset = 0;
        fh->f_disp = 0;
        fh->f_position_in_file_view = 0;
        fh->f_index_in_file_view = 0;
        fh->f_total_bytes = 0;


        fh->f_procs_in_group = NULL;

        fh->f_procs_per_group = -1;

	ompi_datatype_create_contiguous(1048576, 
					&ompi_mpi_byte.dt,
					&default_file_view);
	ompi_datatype_commit (&default_file_view);
		
	fh->f_etype = &ompi_mpi_byte.dt;
	fh->f_filetype =  default_file_view;
	
	
        /* Default file View */
        fh->f_iov_type = MPI_DATATYPE_NULL;
        fh->f_stripe_size = mca_io_ompio_bytes_per_agg;
	/*Decoded iovec of the file-view*/
	fh->f_decoded_iov = NULL;
       
	mca_io_ompio_set_view_internal(fh,
				       0,
				       &ompi_mpi_byte.dt,
				       default_file_view,
				       "native",
				       fh->f_info);
    

	/*Create a derived datatype for the created iovec */
	types[0] = &ompi_mpi_long.dt;
        types[1] = &ompi_mpi_long.dt;

        d[0] = (OPAL_PTRDIFF_TYPE) fh->f_decoded_iov; 
        d[1] = (OPAL_PTRDIFF_TYPE) &fh->f_decoded_iov[0].iov_len;	

        base = d[0];
        for (i=0 ; i<2 ; i++) {
            d[i] -= base;
        }

        ompi_datatype_create_struct (2,
                                     blocklen,
                                     d,
                                     types,
                                     &fh->f_iov_type);
        ompi_datatype_commit (&fh->f_iov_type);

        return OMPI_SUCCESS;
    }
    else {
        return OMPI_ERROR;
    }
}

int ompi_io_ompio_generate_current_file_view (mca_io_ompio_file_t *fh,
                                              size_t max_data,
                                              struct iovec **f_iov,
                                              int *iov_count)
{

    struct iovec *iov = NULL;
    size_t bytes_to_write;
    size_t sum_previous_counts = 0;
    int j, k;
    int block = 1;

   /* allocate an initial iovec, will grow if needed */
    iov = (struct iovec *) malloc 
        (OMPIO_IOVEC_INITIAL_SIZE * sizeof (struct iovec));
    if (NULL == iov) {
        opal_output(1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }

    sum_previous_counts = fh->f_position_in_file_view;
    j = fh->f_index_in_file_view;
    bytes_to_write = max_data;
    k = 0;
    
    while (bytes_to_write) {
        OPAL_PTRDIFF_TYPE disp;
        /* reallocate if needed */
        if (OMPIO_IOVEC_INITIAL_SIZE*block <= k) {
            block ++;
            iov = (struct iovec *)realloc
                (iov, OMPIO_IOVEC_INITIAL_SIZE *block *sizeof(struct iovec));
            if (NULL == iov) {
                opal_output(1, "OUT OF MEMORY\n");
                return OMPI_ERR_OUT_OF_RESOURCE;
            }
        }

        if (fh->f_decoded_iov[j].iov_len - 
            (fh->f_total_bytes - sum_previous_counts) <= 0) {
            sum_previous_counts += fh->f_decoded_iov[j].iov_len;
            j = j + 1;
            if (j == (int)fh->f_iov_count) {
                j = 0;
                sum_previous_counts = 0;
                fh->f_offset += fh->f_view_extent;
                fh->f_position_in_file_view = sum_previous_counts;
                fh->f_index_in_file_view = j;
                fh->f_total_bytes = 0;
            }
        }
	
        disp = (OPAL_PTRDIFF_TYPE)(fh->f_decoded_iov[j].iov_base) + 
            (fh->f_total_bytes - sum_previous_counts);
        iov[k].iov_base = (IOVBASE_TYPE *)(intptr_t)(disp + fh->f_offset);

        if ((fh->f_decoded_iov[j].iov_len - 
             (fh->f_total_bytes - sum_previous_counts)) 
            >= bytes_to_write) {
            iov[k].iov_len = bytes_to_write;
        }
        else {
            iov[k].iov_len =  fh->f_decoded_iov[j].iov_len - 
                (fh->f_total_bytes - sum_previous_counts);
        }

        fh->f_total_bytes += iov[k].iov_len;
        bytes_to_write -= iov[k].iov_len;
        k = k + 1;
    }
    fh->f_position_in_file_view = sum_previous_counts;
    fh->f_index_in_file_view = j;
    *iov_count = k;
    *f_iov = iov;

    if (mca_io_ompio_record_offset_info){
	
	int tot_entries=0, *recvcounts=NULL, *displs=NULL;
	mca_io_ompio_offlen_array_t *per_process=NULL;
	mca_io_ompio_offlen_array_t  *all_process=NULL;
	int *sorted=NULL, *column_list=NULL, *values=NULL;
	int *row_index=NULL, i=0, l=0, m=0;
	int column_index=0, r_index=0;
	int blocklen[3] = {1, 1, 1};
	OPAL_PTRDIFF_TYPE d[3], base;
	ompi_datatype_t *types[3];
	ompi_datatype_t *io_array_type=MPI_DATATYPE_NULL;
	int **adj_matrix=NULL;
	FILE *fp;


        recvcounts = (int *) malloc (fh->f_size * sizeof(int));
        if (NULL == recvcounts){
            return OMPI_ERR_OUT_OF_RESOURCE;
	}
        displs = (int *) malloc (fh->f_size * sizeof(int));
        if (NULL == displs){
            return OMPI_ERR_OUT_OF_RESOURCE;
	}

        fh->f_comm->c_coll.coll_gather (&k,
                                        1,
                                        MPI_INT,
                                        recvcounts,
                                        1,
					MPI_INT,
                                        OMPIO_ROOT,
                                        fh->f_comm,
                                        fh->f_comm->c_coll.coll_gather_module);

        per_process = (mca_io_ompio_offlen_array_t *)
	    malloc (k * sizeof(mca_io_ompio_offlen_array_t));
	if (NULL == per_process){
            opal_output(1,"Error while allocating per process!\n");
            return  OMPI_ERR_OUT_OF_RESOURCE;
        }
        for (i=0;i<k;i++){
            per_process[i].offset =
                (OMPI_MPI_OFFSET_TYPE)(intptr_t)iov[i].iov_base;
            per_process[i].length =
                (MPI_Aint)iov[i].iov_len;
            per_process[i].process_id = fh->f_rank;
        }
	
	types[0] = &ompi_mpi_long.dt;
        types[1] = &ompi_mpi_long.dt;
        types[2] = &ompi_mpi_int.dt;

	d[0] = (OPAL_PTRDIFF_TYPE)&per_process[0];
        d[1] = (OPAL_PTRDIFF_TYPE)&per_process[0].length;
        d[2] = (OPAL_PTRDIFF_TYPE)&per_process[0].process_id;
        base = d[0];
        for (i=0;i<3;i++){
            d[i] -= base;
        }
        ompi_datatype_create_struct (3,
                                     blocklen,
                                     d,
                                     types,
                                     &io_array_type);
        ompi_datatype_commit (&io_array_type);

	if (OMPIO_ROOT == fh->f_rank){
            tot_entries = recvcounts[0];
            displs[0] = 0;
            for(i=1;i<fh->f_size;i++){
                displs[i] = displs[i-1] + recvcounts[i-1];
                tot_entries += recvcounts[i];
            }
            all_process = (mca_io_ompio_offlen_array_t *)
                malloc (tot_entries * sizeof(mca_io_ompio_offlen_array_t));
            if (NULL == all_process){
                opal_output(1,"Error while allocating per process!\n");
                return  OMPI_ERR_OUT_OF_RESOURCE;
            }

            sorted = (int *) malloc
                (tot_entries * sizeof(int));
            if (NULL == all_process){
                opal_output(1,"Error while allocating per process!\n");
                return  OMPI_ERR_OUT_OF_RESOURCE;
            }

            adj_matrix = (int **) malloc (fh->f_size *
                                          sizeof(int *));
            for (i=0;i<fh->f_size;i++){
                adj_matrix[i] = (int *) malloc (fh->f_size *
                                                sizeof (int ));
            }

            for (i=0;i<fh->f_size;i++){
                for (j=0;j<fh->f_size;j++){
                    adj_matrix[i][j] = 0;
                }
            }
	}
	fh->f_comm->c_coll.coll_gatherv (per_process,
					 k,
					 io_array_type,
					 all_process,
					 recvcounts,
					 displs,
					 io_array_type,
					 OMPIO_ROOT,
					 fh->f_comm,
					 fh->f_comm->c_coll.coll_gatherv_module);

	ompi_datatype_destroy(&io_array_type);
	
	if (OMPIO_ROOT == fh->f_rank){
	    
	    ompi_io_ompio_sort_offlen(all_process,
				      tot_entries,
				      sorted);
	    
	    for (i=0;i<tot_entries-1;i++){
		j = all_process[sorted[i]].process_id;
		l = all_process[sorted[i+1]].process_id;
		adj_matrix[j][l] += 1;
		adj_matrix[l][j] += 1;
	    }
	    
	    /*Compress sparse matrix based on CRS to write to file */
	    m = 0;
	    for (i=0; i<fh->f_size; i++){
		for (j=0; j<fh->f_size; j++){
		    if (adj_matrix[i][j] > 0){
			m++;
		    }
		}
	    }
	    fp = fopen("fileview_info.out", "w+");
	    fprintf(fp,"FILEVIEW\n");
	    column_list = (int *) malloc ( m * sizeof(int));
	    if (NULL == column_list){
		opal_output(1,"Error while allocating column list\n");
		return OMPI_ERR_OUT_OF_RESOURCE;
	    }
	    values = (int *) malloc ( m * sizeof(int));
	    if (NULL == values){
		opal_output(1,"Error while allocating values list\n");
		return OMPI_ERR_OUT_OF_RESOURCE;
	    }
	    
	    row_index = (int *) malloc ((fh->f_size + 1) *
					sizeof(int));
	    if (NULL == row_index){
		opal_output(1,"Error while allocating row_index list\n");
		return OMPI_ERR_OUT_OF_RESOURCE;
	    }
	    fprintf(fp,"%d %d\n", m, fh->f_size+1);
	    column_index = 0;
	    r_index = 1;
	    row_index[0] = r_index;
	    for (i=0; i<fh->f_size; i++){
		for (j=0; j<fh->f_size; j++){
		    if (adj_matrix[i][j] > 0){
			values[column_index]= adj_matrix[i][j];
			column_list[column_index]= j;
			fprintf(fp,"%d ", column_list[column_index]);
			column_index++;
			r_index++;
		    }
		    
		}
		row_index[i+1]= r_index;
	    }

	    fprintf(fp,"\n");
	    for (i=0; i<m;i++){
		fprintf(fp, "%d ", values[i]);
	    }
	    fprintf(fp, "\n");
	    for (i=0; i< (fh->f_size + 1); i++){
		fprintf(fp, "%d ", row_index[i]);
	    }
	    fprintf(fp, "\n");
	    fclose(fp);

	    if (NULL != recvcounts){
		free(recvcounts);
		recvcounts = NULL;
	    }
	    if (NULL != displs){
		free(displs);
		displs = NULL;
	    }
	    if (NULL != sorted){
		free(sorted);
		sorted = NULL;
	    }
	    if (NULL != per_process){
		free(per_process);
		per_process = NULL;
	    }
	    if (NULL != all_process){
		free(all_process);
		all_process = NULL;
	    }
	    if (NULL != column_list){
		free(column_list);
		column_list = NULL;
	    }
	    if (NULL != values){
		free(values);
		values = NULL;
	    }
	    if (NULL != row_index){
		free(row_index);
		row_index = NULL;
	    }
	    if (NULL != adj_matrix){
		for (i=0;i<fh->f_size;i++){
		    free(adj_matrix[i]);
		}
		free(adj_matrix);
		adj_matrix = NULL;
	    }
	}
    }
    return OMPI_SUCCESS;
}

int ompi_io_ompio_set_explicit_offset (mca_io_ompio_file_t *fh,
                                       OMPI_MPI_OFFSET_TYPE offset)
{
    int i = 0;
    int k = 0;

    /* starting offset of the current copy of the filew view */
    fh->f_offset = (fh->f_view_extent * 
		    ((offset*fh->f_etype_size) / fh->f_view_size)) + fh->f_disp;


    /* number of bytes used within the current copy of the file view */
    fh->f_total_bytes = (offset*fh->f_etype_size) % fh->f_view_size;
    i = fh->f_total_bytes;


    /* Initialize the block id and the starting offset of the current block 
       within the current copy of the file view to zero */
    fh->f_index_in_file_view = 0;
    fh->f_position_in_file_view = 0;

    /* determine block id that the offset is located in and
       the starting offset of that block */
    k = fh->f_decoded_iov[fh->f_index_in_file_view].iov_len;
    while (i >= k) {
        fh->f_position_in_file_view = k;
        fh->f_index_in_file_view++;
        k += fh->f_decoded_iov[fh->f_index_in_file_view].iov_len;
    }

    return OMPI_SUCCESS;
}

int ompi_io_ompio_decode_datatype (mca_io_ompio_file_t *fh, 
                                   ompi_datatype_t *datatype,
                                   int count,
                                   void *buf,
                                   size_t *max_data,
                                   struct iovec **iov,
                                   uint32_t *iovec_count)
{                      


    
    opal_convertor_t convertor;
    size_t remaining_length = 0;
    uint32_t i;
    uint32_t temp_count;
    struct iovec * temp_iov;
    size_t temp_data;
    

    opal_convertor_clone (fh->f_convertor, &convertor, 0);

    if (OMPI_SUCCESS != opal_convertor_prepare_for_send (&convertor, 
                                                         &(datatype->super),
                                                         count,
                                                         buf)) {
        opal_output (1, "Cannot attach the datatype to a convertor\n");
        return OMPI_ERROR;
    }

    if ( 0 == datatype->super.size ) {
	*max_data = 0;
	*iovec_count = 0;
	*iov = NULL;
	return OMPI_SUCCESS;
    }

    remaining_length = count * datatype->super.size;

    temp_count = OMPIO_IOVEC_INITIAL_SIZE;
    temp_iov = (struct iovec*)malloc(temp_count * sizeof(struct iovec));
    if (NULL == temp_iov) {
        opal_output (1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }

    while (0 == opal_convertor_raw(&convertor, 
				   temp_iov,
                                   &temp_count, 
                                   &temp_data)) {
#if 0 
        printf ("%d: New raw extraction (iovec_count = %d, max_data = %lu)\n",
                fh->f_rank,temp_count, (unsigned long)temp_data);
        for (i = 0; i < temp_count; i++) {
            printf ("%d: \t{%p, %lu}\n",fh->f_rank,
		    temp_iov[i].iov_base,
		    (unsigned long)temp_iov[i].iov_len);
        }
#endif

        *iovec_count = *iovec_count + temp_count;
        *max_data = *max_data + temp_data;
        *iov = (struct iovec *) realloc (*iov, *iovec_count * sizeof(struct iovec));
        if (NULL == *iov) {
            opal_output(1, "OUT OF MEMORY\n");
            return OMPI_ERR_OUT_OF_RESOURCE;
        }
        for (i=0 ; i<temp_count ; i++) {
            (*iov)[i+(*iovec_count-temp_count)].iov_base = temp_iov[i].iov_base;
            (*iov)[i+(*iovec_count-temp_count)].iov_len = temp_iov[i].iov_len;
        }

        remaining_length -= temp_data;
        temp_count = OMPIO_IOVEC_INITIAL_SIZE;
    }
#if 0
    printf ("%d: LAST raw extraction (iovec_count = %d, max_data = %d)\n",
            fh->f_rank,temp_count, temp_data);
    for (i = 0; i < temp_count; i++) {
        printf ("%d: \t offset[%d]: %ld; length[%d]: %ld\n", fh->f_rank,i,temp_iov[i].iov_base, i,temp_iov[i].iov_len);
    }
#endif
    *iovec_count = *iovec_count + temp_count;
    *max_data = *max_data + temp_data;
    *iov = (struct iovec *) realloc (*iov, *iovec_count * sizeof(struct iovec));
    if (NULL == *iov) {
        opal_output(1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }
    for (i=0 ; i<temp_count ; i++) {
        (*iov)[i+(*iovec_count-temp_count)].iov_base = temp_iov[i].iov_base;
        (*iov)[i+(*iovec_count-temp_count)].iov_len = temp_iov[i].iov_len;
    }

    remaining_length -= temp_data;
    #if 0
    if (0 == fh->f_rank) {

        printf ("%d Entries: \n",*iovec_count);
        for (i=0 ; i<*iovec_count ; i++) {
            printf ("\t{%p, %d}\n", 
                    (*iov)[i].iov_base, 
                    (*iov)[i].iov_len);
        }
    }
    #endif
    if (remaining_length != 0) {
        printf( "Not all raw description was been extracted (%lu bytes missing)\n",
                (unsigned long) remaining_length );
    }

    if (NULL != temp_iov) {
        free (temp_iov);
        temp_iov = NULL;
    }

    return OMPI_SUCCESS;
}

int ompi_io_ompio_sort (mca_io_ompio_io_array_t *io_array,
                        int num_entries,
                        int *sorted)
{
    int i = 0;
    int j = 0;
    int left = 0;
    int right = 0;
    int largest = 0;
    int heap_size = num_entries - 1;
    int temp = 0;
    unsigned char done = 0;
    int* temp_arr = NULL;

    temp_arr = (int*)malloc(num_entries*sizeof(int));
    if (NULL == temp_arr) {
        opal_output (1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }
    temp_arr[0] = 0;
    for (i = 1; i < num_entries; ++i) {
        temp_arr[i] = i;
    }
    /* num_entries can be a large no. so NO RECURSION */
    for (i = num_entries/2-1 ; i>=0 ; i--) {
        done = 0;
        j = i;
        largest = j;

        while (!done) {
            left = j*2+1;
            right = j*2+2;
            if ((left <= heap_size) && 
                (io_array[temp_arr[left]].offset > io_array[temp_arr[j]].offset)) {
                largest = left;
            }
            else {
                largest = j;
            }
            if ((right <= heap_size) && 
                (io_array[temp_arr[right]].offset > 
                 io_array[temp_arr[largest]].offset)) {
                largest = right;
            }
            if (largest != j) {
                temp = temp_arr[largest];
                temp_arr[largest] = temp_arr[j];
                temp_arr[j] = temp;
                j = largest;
            }
            else {
                done = 1;
            }
        }
    }

    for (i = num_entries-1; i >=1; --i) {
        temp = temp_arr[0];
        temp_arr[0] = temp_arr[i];
        temp_arr[i] = temp;            
        heap_size--;            
        done = 0;
        j = 0;
        largest = j;

        while (!done) {
            left =  j*2+1;
            right = j*2+2;
            
            if ((left <= heap_size) && 
                (io_array[temp_arr[left]].offset > 
                 io_array[temp_arr[j]].offset)) {
                largest = left;
            }
            else {
                largest = j;
            }
            if ((right <= heap_size) && 
                (io_array[temp_arr[right]].offset > 
                 io_array[temp_arr[largest]].offset)) {
                largest = right;
            }
            if (largest != j) {
                temp = temp_arr[largest];
                temp_arr[largest] = temp_arr[j];
                temp_arr[j] = temp;
                j = largest;
            }
            else {
                done = 1;
            }
        }
        sorted[i] = temp_arr[i];
    }
    sorted[0] = temp_arr[0];

    if (NULL != temp_arr) {
        free(temp_arr);
        temp_arr = NULL;
    }
    return OMPI_SUCCESS;
}

int ompi_io_ompio_sort_iovec (struct iovec *iov,
                              int num_entries,
                              int *sorted)
{
    int i = 0;
    int j = 0;
    int left = 0;
    int right = 0;
    int largest = 0;
    int heap_size = num_entries - 1;
    int temp = 0;
    unsigned char done = 0;
    int* temp_arr = NULL;

    if (0 == num_entries) {
        return OMPI_SUCCESS;
    }

    temp_arr = (int*)malloc(num_entries*sizeof(int));
    if (NULL == temp_arr) {
        opal_output (1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }
    temp_arr[0] = 0;
    for (i = 1; i < num_entries; ++i) {
        temp_arr[i] = i;
    }
    /* num_entries can be a large no. so NO RECURSION */
    for (i = num_entries/2-1 ; i>=0 ; i--) {
        done = 0;
        j = i;
        largest = j;

        while (!done) {
            left = j*2+1;
            right = j*2+2;
            if ((left <= heap_size) && 
                (iov[temp_arr[left]].iov_base > iov[temp_arr[j]].iov_base)) {
                largest = left;
            }
            else {
                largest = j;
            }
            if ((right <= heap_size) && 
                (iov[temp_arr[right]].iov_base > 
                 iov[temp_arr[largest]].iov_base)) {
                largest = right;
            }
            if (largest != j) {
                temp = temp_arr[largest];
                temp_arr[largest] = temp_arr[j];
                temp_arr[j] = temp;
                j = largest;
            }
            else {
                done = 1;
            }
        }
    }

    for (i = num_entries-1; i >=1; --i) {
        temp = temp_arr[0];
        temp_arr[0] = temp_arr[i];
        temp_arr[i] = temp;            
        heap_size--;            
        done = 0;
        j = 0;
        largest = j;

        while (!done) {
            left =  j*2+1;
            right = j*2+2;
            
            if ((left <= heap_size) && 
                (iov[temp_arr[left]].iov_base > 
                 iov[temp_arr[j]].iov_base)) {
                largest = left;
            }
            else {
                largest = j;
            }
            if ((right <= heap_size) && 
                (iov[temp_arr[right]].iov_base > 
                 iov[temp_arr[largest]].iov_base)) {
                largest = right;
            }
            if (largest != j) {
                temp = temp_arr[largest];
                temp_arr[largest] = temp_arr[j];
                temp_arr[j] = temp;
                j = largest;
            }
            else {
                done = 1;
            }
        }
        sorted[i] = temp_arr[i];
    }
    sorted[0] = temp_arr[0];

    if (NULL != temp_arr) {
        free(temp_arr);
        temp_arr = NULL;
    }
    return OMPI_SUCCESS;
}

int ompi_io_ompio_sort_offlen (mca_io_ompio_offlen_array_t *io_array,
                               int num_entries,
                               int *sorted){

    int i = 0;
    int j = 0;
    int left = 0;
    int right = 0;
    int largest = 0;
    int heap_size = num_entries - 1;
    int temp = 0;
    unsigned char done = 0;
    int* temp_arr = NULL;

    temp_arr = (int*)malloc(num_entries*sizeof(int));
    if (NULL == temp_arr) {
        opal_output (1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }
    temp_arr[0] = 0;
    for (i = 1; i < num_entries; ++i) {
        temp_arr[i] = i;
    }
    /* num_entries can be a large no. so NO RECURSION */
    for (i = num_entries/2-1 ; i>=0 ; i--) {
        done = 0;
        j = i;
        largest = j;

        while (!done) {
	    left = j*2+1;
            right = j*2+2;
            if ((left <= heap_size) &&
                (io_array[temp_arr[left]].offset > io_array[temp_arr[j]].offset)) {
                largest = left;
            }
            else {
                largest = j;
            }
            if ((right <= heap_size) &&
                (io_array[temp_arr[right]].offset >
                 io_array[temp_arr[largest]].offset)) {
                largest = right;
            }
            if (largest != j) {
                temp = temp_arr[largest];
                temp_arr[largest] = temp_arr[j];
                temp_arr[j] = temp;
                j = largest;
            }
            else {
                done = 1;
            }
        }
    }

    for (i = num_entries-1; i >=1; --i) {
        temp = temp_arr[0];
        temp_arr[0] = temp_arr[i];
        temp_arr[i] = temp;
        heap_size--;
        done = 0;
        j = 0;
        largest = j;

        while (!done) {
            left =  j*2+1;
            right = j*2+2;

            if ((left <= heap_size) &&
                (io_array[temp_arr[left]].offset >
                 io_array[temp_arr[j]].offset)) {
		largest = left;
            }
            else {
                largest = j;
            }
            if ((right <= heap_size) &&
                (io_array[temp_arr[right]].offset >
                 io_array[temp_arr[largest]].offset)) {
                largest = right;
            }
            if (largest != j) {
                temp = temp_arr[largest];
                temp_arr[largest] = temp_arr[j];
                temp_arr[j] = temp;
                j = largest;
            }
            else {
                done = 1;
            }
        }
        sorted[i] = temp_arr[i];
    }
    sorted[0] = temp_arr[0];

    if (NULL != temp_arr) {
        free(temp_arr);
        temp_arr = NULL;
    }
    return OMPI_SUCCESS;
}

int ompi_io_ompio_set_aggregator_props (mca_io_ompio_file_t *fh,
                                        int num_aggregators,
                                        size_t bytes_per_proc)
{


    int j;
    int root_offset=0;
    int ndims, i=1, n=0, total_groups=0;
    int *dims=NULL, *periods=NULL, *coords=NULL, *coords_tmp=NULL;
    int procs_per_node = 1; /* MSC TODO - Figure out a way to get this info */
    size_t max_bytes_per_proc = 0;
 

    /*If only one process used, no need to do aggregator selection!*/
    if (fh->f_size == 1){
	num_aggregators = 1;
    }

    fh->f_flags |= OMPIO_AGGREGATOR_IS_SET;

    if (-1 == num_aggregators) {
        /* Determine Topology Information */
        if (fh->f_comm->c_flags & OMPI_COMM_CART) {
            fh->f_comm->c_topo->topo.cart.cartdim_get(fh->f_comm, &ndims);

            dims = (int*)malloc (ndims * sizeof(int));
            if (NULL == dims) {
                opal_output (1, "OUT OF MEMORY\n");
                return OMPI_ERR_OUT_OF_RESOURCE;
            }

            periods = (int*)malloc (ndims * sizeof(int));
            if (NULL == periods) {
                opal_output (1, "OUT OF MEMORY\n");
                return OMPI_ERR_OUT_OF_RESOURCE;
            }

            coords = (int*)malloc (ndims * sizeof(int));
            if (NULL == coords) {
                opal_output (1, "OUT OF MEMORY\n");
                return OMPI_ERR_OUT_OF_RESOURCE;
            }

            coords_tmp = (int*)malloc (ndims * sizeof(int));
            if (NULL == coords_tmp) {
                opal_output (1, "OUT OF MEMORY\n");
                return OMPI_ERR_OUT_OF_RESOURCE;
            }

            fh->f_comm->c_topo->topo.cart.cart_get(fh->f_comm, ndims, dims, periods, coords);

            /*
              printf ("NDIMS = %d\n", ndims);
              for (j=0 ; j<ndims; j++) {
              printf ("%d:  dims[%d] = %d     period[%d] = %d    coords[%d] = %d\n",
              fh->f_rank,j,dims[j],j,periods[j],j,coords[j]);
              }
            */

            while (1) {
                if (fh->f_size/dims[0]*i >= procs_per_node) {
                    fh->f_procs_per_group = fh->f_size/dims[0]*i;
                    break;
                }
                i++;
            }

            total_groups = ceil((float)fh->f_size/fh->f_procs_per_group);

            if ((coords[0]/i + 1) == total_groups && 0 != (total_groups%i)) {
                fh->f_procs_per_group = (fh->f_size/dims[0]) * (total_groups%i);
            }
            /*
            printf ("BEFORE ADJUSTMENT: %d ---> procs_per_group = %d   total_groups = %d\n", 
                    fh->f_rank, fh->f_procs_per_group, total_groups);
            */
            /* check if the current grouping needs to be expanded or shrinked */
            if ((size_t)mca_io_ompio_bytes_per_agg < 
                bytes_per_proc * fh->f_procs_per_group) {

                root_offset = ceil ((float)mca_io_ompio_bytes_per_agg/bytes_per_proc);
                if (fh->f_procs_per_group/root_offset != coords[1]/root_offset) {
                    fh->f_procs_per_group = root_offset;
                }
                else {
                    fh->f_procs_per_group = fh->f_procs_per_group%root_offset;
                }
            }
            else if ((size_t)mca_io_ompio_bytes_per_agg > 
                     bytes_per_proc * fh->f_procs_per_group) {
                i = ceil ((float)mca_io_ompio_bytes_per_agg/
                          (bytes_per_proc * fh->f_procs_per_group));
                root_offset = fh->f_procs_per_group * i;

                if (fh->f_size/root_offset != fh->f_rank/root_offset) {
                    fh->f_procs_per_group = root_offset;
                }
                else {
                    fh->f_procs_per_group = fh->f_size%root_offset;
                }
            }
            /*
            printf ("AFTER ADJUSTMENT: %d (%d) ---> procs_per_group = %d\n", 
                    fh->f_rank, coords[1], fh->f_procs_per_group);
            */
            fh->f_procs_in_group = (int*)malloc (fh->f_procs_per_group * sizeof(int));
            if (NULL == fh->f_procs_in_group) {
                opal_output (1, "OUT OF MEMORY\n");
                return OMPI_ERR_OUT_OF_RESOURCE;
            }

            for (j=0 ; j<fh->f_size ; j++) {
                fh->f_comm->c_topo->topo.cart.cart_coords (fh->f_comm, j, ndims, coords_tmp);
                if (coords_tmp[0]/i == coords[0]/i) {
                    if ((coords_tmp[1]/root_offset)*root_offset == 
                        (coords[1]/root_offset)*root_offset) {
                        fh->f_procs_in_group[n] = j;
                        n++;
                    }
                }
            }

            fh->f_aggregator_index = 0;

            /*
            if (fh->f_procs_in_group[fh->f_aggregator_index] == fh->f_rank)  {
                for (j=0 ; j<fh->f_procs_per_group; j++) {
                    printf ("%d: Proc %d: %d\n", fh->f_rank, j, fh->f_procs_in_group[j]);
                }
            }
            */

            if (NULL != dims) {
                free (dims);
                dims = NULL;
            }
            if (NULL != periods) {
                free (periods);
                periods = NULL;
            }
            if (NULL != coords) {
                free (coords);
                coords = NULL;
            }
            if (NULL != coords_tmp) {
                free (coords_tmp);
                coords_tmp =  NULL;
            }
            return OMPI_SUCCESS;
        }

        /*
        temp = fh->f_iov_count;
        fh->f_comm->c_coll.coll_bcast (&temp,
                                       1,
                                       MPI_LONG,
                                       OMPIO_ROOT,
                                       fh->f_comm,
                                       fh->f_comm->c_coll.coll_bcast_module);

        if (temp != fh->f_iov_count) {
            flag = 0;
        }
        else {
            flag = 1;
        }
        fh->f_comm->c_coll.coll_allreduce (&flag,
                                           &global_flag,
                                           1,
                                           MPI_INT,
                                           MPI_MIN,
                                           fh->f_comm,
                                           fh->f_comm->c_coll.coll_allreduce_module);
        */
        if (fh->f_flags & OMPIO_UNIFORM_FVIEW) {
            OMPI_MPI_OFFSET_TYPE *start_offsets = NULL;
            OMPI_MPI_OFFSET_TYPE stride = 0;

            if (OMPIO_ROOT == fh->f_rank) {
                start_offsets = malloc (fh->f_size * sizeof(OMPI_MPI_OFFSET_TYPE));
            }

            fh->f_comm->c_coll.coll_gather (&fh->f_decoded_iov[0].iov_base,
                                            1,
                                            MPI_LONG,
                                            start_offsets,
                                            1,
                                            MPI_LONG,
                                            OMPIO_ROOT,
                                            fh->f_comm,
                                            fh->f_comm->c_coll.coll_gather_module);
            if (OMPIO_ROOT == fh->f_rank) {
                stride = start_offsets[1] - start_offsets[0];
                for (i=2 ; i<fh->f_size ; i++) {
                    if (stride != start_offsets[i]-start_offsets[i-1]) {
                        break;
                    }
                }
            }

            if (NULL != start_offsets) {
                free (start_offsets);
                start_offsets = NULL;
            }

            fh->f_comm->c_coll.coll_bcast (&i,
                                           1,
                                           MPI_INT,
                                           OMPIO_ROOT,
                                           fh->f_comm,
                                           fh->f_comm->c_coll.coll_bcast_module);

            fh->f_procs_per_group = i;
            max_bytes_per_proc = bytes_per_proc;
        }
        else {
            fh->f_procs_per_group = 1;
            fh->f_comm->c_coll.coll_allreduce (&bytes_per_proc,
                                               &max_bytes_per_proc,
                                               1,
                                               MPI_LONG,
                                               MPI_MAX,
                                               fh->f_comm,
                                               fh->f_comm->c_coll.coll_allreduce_module);
        }
        /*
        printf ("BEFORE ADJUSTMENT: %d ---> procs_per_group = %d\n", 
                fh->f_rank, fh->f_procs_per_group);
        
        printf ("COMPARING %d   to  %d x %d = %d\n", 
                mca_io_ompio_bytes_per_agg,
                bytes_per_proc,
                fh->f_procs_per_group,
                fh->f_procs_per_group*bytes_per_proc);
        */
        /* check if the current grouping needs to be expanded or shrinked */
        if ((size_t)mca_io_ompio_bytes_per_agg < 
            max_bytes_per_proc * fh->f_procs_per_group) {
            root_offset = ceil ((float)mca_io_ompio_bytes_per_agg/max_bytes_per_proc);

            if (fh->f_procs_per_group/root_offset != 
                (fh->f_rank%fh->f_procs_per_group)/root_offset) {
                fh->f_procs_per_group = root_offset;
            }
            else {
                fh->f_procs_per_group = fh->f_procs_per_group%root_offset;
            }
        }
        else if ((size_t)mca_io_ompio_bytes_per_agg > 
                 max_bytes_per_proc * fh->f_procs_per_group) {
            i = ceil ((float)mca_io_ompio_bytes_per_agg/
                      (max_bytes_per_proc * fh->f_procs_per_group));
            root_offset = fh->f_procs_per_group * i;
            i = root_offset;

            if (root_offset > fh->f_size) {
                root_offset = fh->f_size;
            }

            if (fh->f_size/root_offset != fh->f_rank/root_offset) {
                fh->f_procs_per_group = root_offset;
            }
            else {
                fh->f_procs_per_group = fh->f_size%root_offset;
            }
        }
        /*
        printf ("AFTER ADJUSTMENT: %d ---> procs_per_group = %d\n", 
                fh->f_rank, fh->f_procs_per_group);
        */
        fh->f_procs_in_group = (int*)malloc 
            (fh->f_procs_per_group * sizeof(int));
        if (NULL == fh->f_procs_in_group) {
            opal_output (1, "OUT OF MEMORY\n");
            return OMPI_ERR_OUT_OF_RESOURCE;
        }
        for (j=0 ; j<fh->f_size ; j++) {
            if (j/i == fh->f_rank/i) {
                if (((j%i)/root_offset)*root_offset == 
                    ((fh->f_rank%i)/root_offset)*root_offset) {
                    fh->f_procs_in_group[n] = j;
                    n++;
                }
            }
        }

        fh->f_aggregator_index = 0;
        /*
          if (fh->f_procs_in_group[fh->f_aggregator_index] == fh->f_rank)  {
          for (j=0 ; j<fh->f_procs_per_group; j++) {
          printf ("%d: Proc %d: %d\n", fh->f_rank, j, fh->f_procs_in_group[j]);
          }
          }
        */
        return OMPI_SUCCESS;
    }

    /* calculate the offset at which each group of processes will start */
    root_offset = ceil ((float)fh->f_size/num_aggregators);

    /* calculate the number of processes in the local group */
    if (fh->f_size/root_offset != fh->f_rank/root_offset) {
        fh->f_procs_per_group = root_offset;
    }
    else {
        fh->f_procs_per_group = fh->f_size%root_offset;
    }

    fh->f_procs_in_group = (int*)malloc (fh->f_procs_per_group * sizeof(int));
    if (NULL == fh->f_procs_in_group) {
        opal_output (1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }

    for (j=0 ; j<fh->f_procs_per_group ; j++) {
        fh->f_procs_in_group[j] = (fh->f_rank/root_offset) * root_offset + j;
    }

    fh->f_aggregator_index = 0;

    return OMPI_SUCCESS;
}




int ompi_io_ompio_break_file_view (mca_io_ompio_file_t *fh,
                                   struct iovec *iov,
                                   int count,
                                   int stripe_count,
                                   size_t stripe_size,
                                   struct iovec **broken_iov,
                                   int *broken_count)
{



    struct iovec *temp_iov = NULL;
    int i = 0;
    int k = 0;
    int block = 1;
    int broken = 0;
    size_t remaining = 0;
    size_t temp = 0;
    OPAL_PTRDIFF_TYPE current_offset = 0;


    /* allocate an initial iovec, will grow if needed */
    temp_iov = (struct iovec *) malloc 
        (count * sizeof (struct iovec));
    if (NULL == temp_iov) {
        opal_output(1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }

    while (i < count) {
        if (count*block <= k) {
            block ++;
            temp_iov = (struct iovec *)realloc
                (temp_iov, count * block *sizeof(struct iovec));
            if (NULL == temp_iov) {
                opal_output(1, "OUT OF MEMORY\n");
                return OMPI_ERR_OUT_OF_RESOURCE;
            }
        }
        if (0 == broken) {
            temp = (OPAL_PTRDIFF_TYPE)(iov[i].iov_base)%stripe_size;
            if ((stripe_size-temp) >= iov[i].iov_len) {
                temp_iov[k].iov_base = iov[i].iov_base;
                temp_iov[k].iov_len = iov[i].iov_len;
                i++;
                k++;
            }
            else {
                temp_iov[k].iov_base = iov[i].iov_base;
                temp_iov[k].iov_len = stripe_size-temp;
                current_offset = (OPAL_PTRDIFF_TYPE)(temp_iov[k].iov_base) + 
                    temp_iov[k].iov_len;
                remaining = iov[i].iov_len - temp_iov[k].iov_len;
                k++;
                broken ++;
            }
            continue;
        }
        temp = current_offset%stripe_size;
        if ((stripe_size-temp) >= remaining) {
            temp_iov[k].iov_base = (IOVBASE_TYPE *)current_offset;
            temp_iov[k].iov_len = remaining;
            i++;
            k++;
            broken = 0;
            current_offset = 0;
            remaining = 0;
        }
        else {
            temp_iov[k].iov_base = (IOVBASE_TYPE *)current_offset;
            temp_iov[k].iov_len = stripe_size-temp;
            current_offset += temp_iov[k].iov_len;
            remaining -= temp_iov[k].iov_len;
            k++;
            broken ++;
        }
    }
    *broken_iov = temp_iov;
    *broken_count = k;

    return 1;
}
int ompi_io_ompio_distribute_file_view (mca_io_ompio_file_t *fh,
                                        struct iovec *broken_iov,
                                        int broken_count,
                                        int num_aggregators,
                                        size_t stripe_size,
                                        int **fview_count,
                                        struct iovec **iov,
                                        int *count)
{


    int *num_entries = NULL;
    int *broken_index = NULL;
    int temp = 0;
    int *fview_cnt = NULL;
    int global_fview_count = 0;
    int i = 0;
    int *displs = NULL;
    int rc = OMPI_SUCCESS;
    struct iovec *global_fview = NULL;
    struct iovec **broken = NULL;
    MPI_Request *req=NULL, *sendreq=NULL;


    num_entries = (int *) malloc (sizeof (int) * num_aggregators);
    if (NULL == num_entries) {
        opal_output (1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }
    broken_index = (int *) malloc (sizeof (int) * num_aggregators);
    if (NULL == broken_index) {
        opal_output (1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }

    memset (num_entries, 0x0, num_aggregators * sizeof (int));
    memset (broken_index, 0x0, num_aggregators * sizeof (int));

    /* calculate how many entries in the broken iovec belong to each aggregator */
    for (i=0 ; i<broken_count ; i++) {
        temp = (int)((OPAL_PTRDIFF_TYPE)broken_iov[i].iov_base/stripe_size) % 
            num_aggregators;
        num_entries [temp] ++;
    }

    if (0 == fh->f_rank%fh->f_aggregator_index) {
        fview_cnt = (int *) malloc (sizeof (int) * fh->f_size);
        if (NULL == fview_cnt) {
            opal_output (1, "OUT OF MEMORY\n");
            return OMPI_ERR_OUT_OF_RESOURCE;
        }
        req = (MPI_Request *)malloc (fh->f_size * sizeof(MPI_Request));
        if (NULL == req) {
            return OMPI_ERR_OUT_OF_RESOURCE;
        }
    }

    sendreq = (MPI_Request *)malloc (num_aggregators * sizeof(MPI_Request));
    if (NULL == sendreq) {
        return OMPI_ERR_OUT_OF_RESOURCE;
    }

    /* gather at each aggregator how many entires from the broken file view it 
       expects from each process */
    if (0 == fh->f_rank%fh->f_aggregator_index) {
        for (i=0; i<fh->f_size ; i++) {
            rc = MCA_PML_CALL(irecv(&fview_cnt[i],
                                    1,
                                    MPI_INT,
                                    i,
                                    OMPIO_TAG_GATHER,
                                    fh->f_comm,
                                    &req[i]));
            if (OMPI_SUCCESS != rc) {
                goto exit;
            }
        }
    }

    for (i=0 ; i<num_aggregators ; i++) {
        rc = MCA_PML_CALL(isend(&num_entries[i],
                                1,
                                MPI_INT,
                                i*fh->f_aggregator_index,
                                OMPIO_TAG_GATHER,
                                MCA_PML_BASE_SEND_STANDARD, 
                                fh->f_comm,
                                &sendreq[i]));
        if (OMPI_SUCCESS != rc) {
            goto exit;
        }
    }

    if (0 == fh->f_rank%fh->f_aggregator_index) {
        rc = ompi_request_wait_all (fh->f_size, req, MPI_STATUSES_IGNORE);
        if (OMPI_SUCCESS != rc) {
            goto exit;
        }
    }
    rc = ompi_request_wait_all (num_aggregators, sendreq, MPI_STATUSES_IGNORE);
    if (OMPI_SUCCESS != rc) {
        goto exit;
    }

    /*
    for (i=0 ; i<num_aggregators ; i++) {
        fh->f_comm->c_coll.coll_gather (&num_entries[i],
                                        1,
                                        MPI_INT,
                                        fview_cnt,
                                        1,
                                        MPI_INT,
                                        i*fh->f_aggregator_index,
                                        fh->f_comm,
                                        fh->f_comm->c_coll.coll_gather_module);
    }
    */

    if (0 == fh->f_rank%fh->f_aggregator_index) {
        displs = (int*) malloc (fh->f_size * sizeof (int));
        if (NULL == displs) {
            opal_output (1, "OUT OF MEMORY\n");
            return OMPI_ERR_OUT_OF_RESOURCE;
        }
        displs[0] = 0;
        global_fview_count = fview_cnt[0];
        for (i=1 ; i<fh->f_size ; i++) {
            global_fview_count += fview_cnt[i];
            displs[i] = displs[i-1] + fview_cnt[i-1];
        }

        if (global_fview_count) {
            global_fview = (struct iovec*)malloc (global_fview_count *
                                                  sizeof(struct iovec));
            if (NULL == global_fview) {
                opal_output (1, "OUT OF MEMORY\n");
                return OMPI_ERR_OUT_OF_RESOURCE;
            }
        }
    }

    broken = (struct iovec**)malloc (num_aggregators * sizeof(struct iovec *));
    if (NULL == broken) {
        opal_output (1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }

    for (i=0 ; i<num_aggregators ; i++) {
        broken[i] = NULL;
        if (0 != num_entries[i]) {
            broken[i] = (struct iovec*) malloc (num_entries[i] *
                                                sizeof (struct iovec));
            if (NULL == broken[i]) {
                opal_output (1, "OUT OF MEMORY\n");
                return OMPI_ERR_OUT_OF_RESOURCE;
            }
        }
    }

    for (i=0 ; i<broken_count ; i++) {
        temp = (int)((OPAL_PTRDIFF_TYPE)broken_iov[i].iov_base/stripe_size) % 
            num_aggregators;
        broken[temp][broken_index[temp]].iov_base = broken_iov[i].iov_base;
        broken[temp][broken_index[temp]].iov_len = broken_iov[i].iov_len;
        broken_index[temp] ++;
    }
    /*
    for (i=0 ; i<num_aggregators ; i++) {
        int j;
        for (j=0 ; j<num_entries[i] ; j++) {
            printf("%d->%d: OFFSET: %d   LENGTH: %d\n",
                   fh->f_rank,
                   i,
                   broken[i][j].iov_base,
                   broken[i][j].iov_len);
        }
    }
    sleep(1);
    */

    if (0 == fh->f_rank%fh->f_aggregator_index) {
        ptrdiff_t lb, extent;
        rc = ompi_datatype_get_extent(fh->f_iov_type, &lb, &extent);
        if (OMPI_SUCCESS != rc) {
                goto exit;
        }
        for (i=0; i<fh->f_size ; i++) {
            if (fview_cnt[i]) {
                char *ptmp;
                ptmp = ((char *) global_fview) + (extent * displs[i]);
                rc = MCA_PML_CALL(irecv(ptmp,
                                        fview_cnt[i],
                                        fh->f_iov_type,
                                        i,
                                        OMPIO_TAG_GATHERV,
                                        fh->f_comm,
                                        &req[i]));
                if (OMPI_SUCCESS != rc) {
                    goto exit;
                }
            }
        }
    }

    for (i=0 ; i<num_aggregators ; i++) {
        if (num_entries[i]) {
            rc = MCA_PML_CALL(isend(broken[i],
                                    num_entries[i],
                                    fh->f_iov_type,
                                    i*fh->f_aggregator_index,
                                    OMPIO_TAG_GATHERV,
                                    MCA_PML_BASE_SEND_STANDARD, 
                                    fh->f_comm,
                                    &sendreq[i]));
            if (OMPI_SUCCESS != rc) {
                goto exit;
            }
        }
    }

    if (0 == fh->f_rank%fh->f_aggregator_index) {
        for (i=0; i<fh->f_size ; i++) {
            if (fview_cnt[i]) {
                rc = ompi_request_wait (&req[i], MPI_STATUS_IGNORE);
                if (OMPI_SUCCESS != rc) {
                    goto exit;
                }
            }
        }
    }

    for (i=0; i<num_aggregators ; i++) {
        if (num_entries[i]) {
            rc = ompi_request_wait (&sendreq[i], MPI_STATUS_IGNORE);
            if (OMPI_SUCCESS != rc) {
                goto exit;
            }
        }
    }

    /*
    for (i=0 ; i<num_aggregators ; i++) {
        fh->f_comm->c_coll.coll_gatherv (broken[i],
                                         num_entries[i],
                                         fh->f_iov_type,
                                         global_fview,
                                         fview_cnt,
                                         displs,
                                         fh->f_iov_type,
                                         i*fh->f_aggregator_index,
                                         fh->f_comm,
                                         fh->f_comm->c_coll.coll_gatherv_module);
    }
    */
    /*
    for (i=0 ; i<global_fview_count ; i++) {
        printf("%d: OFFSET: %d   LENGTH: %d\n",
               fh->f_rank,
               global_fview[i].iov_base,
               global_fview[i].iov_len);
    }
    */
 exit:
    for (i=0 ; i<num_aggregators ; i++) {
        if (NULL != broken[i]) {
            free (broken[i]);
            broken[i] = NULL;
        }
    }
    if (NULL != req) {
        free (req);
    }
    if (NULL != sendreq) {
        free (sendreq);
    }
    if (NULL != broken) {
        free (broken);
        broken = NULL;
    }
    if (NULL != num_entries) {
        free (num_entries);
        num_entries = NULL;
    }
    if (NULL != broken_index) {
        free (broken_index);
        broken_index = NULL;
    }
    if (NULL != displs) {
        free (displs);
        displs = NULL;
    }

    *fview_count = fview_cnt;
    *iov = global_fview;    
    *count = global_fview_count;
    
    return rc;
}

int ompi_io_ompio_gather_data (mca_io_ompio_file_t *fh,
                               void *send_buf,
                               size_t total_bytes_sent,
                               int *bytes_sent,
                               struct iovec *broken_iovec,
                               int broken_index,
                               size_t partial,
                               void *global_buf,
                               int *bytes_per_process,
                               int *displs,
                               int num_aggregators,
                               size_t stripe_size)
{
    void **sbuf = NULL;
    size_t bytes_remaining;
    size_t *temp_position = NULL;
    size_t part;
    int current;
    int temp = 0;
    int i = 0;
    int rc = OMPI_SUCCESS;
    MPI_Request *req=NULL, *sendreq=NULL;


    current = broken_index;
    part = partial;

    sbuf = (void**) malloc (num_aggregators * sizeof(void *));
    if (NULL == sbuf) {
        opal_output (1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }

    temp_position = (size_t *) malloc (num_aggregators * sizeof(size_t));
    if (NULL == temp_position) {
        opal_output (1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }
    memset (temp_position, 0x0, num_aggregators * sizeof (size_t));

    for (i=0 ; i<num_aggregators ; i++) {
        sbuf[i] = NULL;
        if (0 != bytes_sent[i]) {
            sbuf[i] = (void *) malloc (bytes_sent[i]);
            if (NULL == sbuf[i]) {
                opal_output (1, "OUT OF MEMORY\n");
                return OMPI_ERR_OUT_OF_RESOURCE;
            }
        }
    }

    bytes_remaining = total_bytes_sent;

    while (bytes_remaining) {
        temp = (int)((OPAL_PTRDIFF_TYPE)broken_iovec[current].iov_base/stripe_size) 
            % num_aggregators;

        if (part) {
            if (bytes_remaining > part) {
                memcpy ((IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)sbuf[temp]+
                                         temp_position[temp]),
                        (IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)send_buf +
                                         (total_bytes_sent-bytes_remaining)),
                        part);
                bytes_remaining -= part;
                temp_position[temp] += part;
                part = 0;
                current ++;  
            }
            else  {
                memcpy ((IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)sbuf[temp]+
                                         temp_position[temp]),
                        (IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)send_buf +
                                         (total_bytes_sent-bytes_remaining)),
                        bytes_remaining);
                break;
            }
        }
        else {
            if (bytes_remaining > broken_iovec[current].iov_len) {
                memcpy ((IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)sbuf[temp]+
                                         temp_position[temp]),
                        (IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)send_buf +
                                         (total_bytes_sent-bytes_remaining)),
                        broken_iovec[current].iov_len);
                bytes_remaining -= broken_iovec[current].iov_len;
                temp_position[temp] += broken_iovec[current].iov_len;
                current ++;
            }
            else {
                memcpy ((IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)sbuf[temp]+
                                         temp_position[temp]),
                        (IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)send_buf +
                                         (total_bytes_sent-bytes_remaining)),
                        bytes_remaining);
                break;
            }
        }
    }

    sendreq = (MPI_Request *)malloc (num_aggregators * sizeof(MPI_Request));
    if (NULL == sendreq) {
        return OMPI_ERR_OUT_OF_RESOURCE;
    }

    if (0 == fh->f_rank%fh->f_aggregator_index) {
        req = (MPI_Request *)malloc (fh->f_size * sizeof(MPI_Request));
        if (NULL == req) {
            return OMPI_ERR_OUT_OF_RESOURCE;
        }
        for (i=0; i<fh->f_size ; i++) {
            if (bytes_per_process[i]) {
                rc = MCA_PML_CALL(irecv((char *)global_buf + displs[i],
                                        bytes_per_process[i],
                                        MPI_BYTE,
                                        i,
                                        OMPIO_TAG_GATHERV,
                                        fh->f_comm,
                                        &req[i]));
                if (OMPI_SUCCESS != rc) {
                    goto exit;
                }
            }
        }
    }

    for (i=0 ; i<num_aggregators ; i++) {
        if (bytes_sent[i]) {
            rc = MCA_PML_CALL(isend(sbuf[i],
                                    bytes_sent[i],
                                    MPI_BYTE,
                                    i*fh->f_aggregator_index,
                                    OMPIO_TAG_GATHERV,
                                    MCA_PML_BASE_SEND_STANDARD, 
                                    fh->f_comm,
                                    &sendreq[i]));
            if (OMPI_SUCCESS != rc) {
                goto exit;
            }
        }
    }

    if (0 == fh->f_rank%fh->f_aggregator_index) {
        for (i=0; i<fh->f_size ; i++) {
            if (bytes_per_process[i]) {
                rc = ompi_request_wait (&req[i], MPI_STATUS_IGNORE);
                if (OMPI_SUCCESS != rc) {
                    goto exit;
                }
            }
        }
    }
    for (i=0; i<num_aggregators ; i++) {
        if (bytes_sent[i]) {
            rc = ompi_request_wait (&sendreq[i], MPI_STATUS_IGNORE);
            if (OMPI_SUCCESS != rc) {
                goto exit;
            }
        }
    }
    /*
    for (i=0 ; i<num_aggregators ; i++) {
        fh->f_comm->c_coll.coll_gatherv (sbuf[i],
                                         bytes_sent[i],
                                         MPI_BYTE,
                                         global_buf,
                                         bytes_per_process,
                                         displs,
                                         MPI_BYTE,
                                         i*fh->f_aggregator_index,
                                         fh->f_comm,
                                         fh->f_comm->c_coll.coll_gatherv_module);
    }
    */

 exit:
    for (i=0 ; i<num_aggregators ; i++) {
        if (NULL != sbuf[i]) {
            free (sbuf[i]);
            sbuf[i] = NULL;
        }
    }
    if (NULL != req) {
        free (req);
    }
    if (NULL != sendreq) {
        free (sendreq);
    }
    if (NULL != sbuf) {
        free (sbuf);
        sbuf = NULL;
    }
    if (NULL != temp_position) {
        free (temp_position);
        temp_position = NULL;
    }

    return rc;
}

int ompi_io_ompio_scatter_data (mca_io_ompio_file_t *fh,
                                void *receive_buf,
                                size_t total_bytes_recv,
                                int *bytes_received,
                                struct iovec *broken_iovec,
                                int broken_index,
                                size_t partial,
                                void *global_buf,
                                int *bytes_per_process,
                                int *displs,
                                int num_aggregators,
                                size_t stripe_size)
{
    void **rbuf = NULL;
    size_t bytes_remaining;
    size_t *temp_position = NULL;
    size_t part;
    int current;
    int temp = 0;
    int i = 0;
    int rc = OMPI_SUCCESS;
    MPI_Request *req=NULL, *recvreq=NULL;


    current = broken_index;
    part = partial;

    rbuf = (void**) malloc (num_aggregators * sizeof(void *));
    if (NULL == rbuf) {
        opal_output (1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }

    temp_position = (size_t *) malloc (num_aggregators * sizeof(size_t));
    if (NULL == temp_position) {
        opal_output (1, "OUT OF MEMORY\n");
        return OMPI_ERR_OUT_OF_RESOURCE;
    }
    memset (temp_position, 0x0, num_aggregators * sizeof (size_t));

    for (i=0 ; i<num_aggregators ; i++) {
        rbuf[i] = NULL;
        if (0 != bytes_received[i]) {
            rbuf[i] = (void *) malloc (bytes_received[i]);
            if (NULL == rbuf[i]) {
                opal_output (1, "OUT OF MEMORY\n");
                return OMPI_ERR_OUT_OF_RESOURCE;
            }
        }
    }

    recvreq = (MPI_Request *)malloc (num_aggregators * sizeof(MPI_Request));
    if (NULL == recvreq) {
        return OMPI_ERR_OUT_OF_RESOURCE;
    }
    for (i=0 ; i<num_aggregators ; i++) {
        if (bytes_received[i]) {
            rc = MCA_PML_CALL(irecv(rbuf[i],
                                    bytes_received[i],
                                    MPI_BYTE,
                                    i*fh->f_aggregator_index,
                                    OMPIO_TAG_SCATTERV,
                                    fh->f_comm,
                                    &recvreq[i]));
            if (OMPI_SUCCESS != rc) {
                goto exit;
            }
        }
    }

    if (0 == fh->f_rank%fh->f_aggregator_index) {
        req = (MPI_Request *)malloc (fh->f_size * sizeof(MPI_Request));
        if (NULL == req) {
            return OMPI_ERR_OUT_OF_RESOURCE;
        }
        for (i=0; i<fh->f_size ; i++) {
            if (bytes_per_process[i]) {
                rc = MCA_PML_CALL(isend((char *)global_buf + displs[i],
                                        bytes_per_process[i],
                                        MPI_BYTE,
                                        i,
                                        OMPIO_TAG_SCATTERV,
                                        MCA_PML_BASE_SEND_STANDARD,
                                        fh->f_comm,
                                        &req[i]));
                if (OMPI_SUCCESS != rc) {
                    goto exit;
                }
            }
        }
    }

    for (i=0; i<num_aggregators ; i++) {
        if (bytes_received[i]) {
            rc = ompi_request_wait (&recvreq[i], MPI_STATUS_IGNORE);
            if (OMPI_SUCCESS != rc) {
                goto exit;
            }
        }
    }
    if (0 == fh->f_rank%fh->f_aggregator_index) {
        for (i=0; i<fh->f_size ; i++) {
            if (bytes_per_process[i]) {
                rc = ompi_request_wait (&req[i], MPI_STATUS_IGNORE);
                if (OMPI_SUCCESS != rc) {
                    goto exit;
                }
            }
        }
    }
    /*
    for (i=0 ; i<num_aggregators ; i++) {
        fh->f_comm->c_coll.coll_scatterv (global_buf,
                                          bytes_per_process,
                                          displs,
                                          MPI_BYTE,
                                          rbuf[i],
                                          bytes_received[i],
                                          MPI_BYTE,
                                          i*fh->f_aggregator_index,
                                          fh->f_comm,
                                          fh->f_comm->c_coll.coll_scatterv_module);
    }
    */
    bytes_remaining = total_bytes_recv;

    while (bytes_remaining) {
        temp = (int)((OPAL_PTRDIFF_TYPE)broken_iovec[current].iov_base/stripe_size) 
            % num_aggregators;

        if (part) {
            if (bytes_remaining > part) {
                memcpy ((IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)receive_buf +
                                         (total_bytes_recv-bytes_remaining)),
                        (IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)rbuf[temp]+
                                         temp_position[temp]),
                        part);
                bytes_remaining -= part;
                temp_position[temp] += part;
                part = 0;
                current ++;  
            }
            else  {
                memcpy ((IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)receive_buf +
                                         (total_bytes_recv-bytes_remaining)),
                        (IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)rbuf[temp]+
                                         temp_position[temp]),
                        bytes_remaining);
                break;
            }
        }
        else {
            if (bytes_remaining > broken_iovec[current].iov_len) {
                memcpy ((IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)receive_buf +
                                         (total_bytes_recv-bytes_remaining)),
                        (IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)rbuf[temp]+
                                         temp_position[temp]),
                        broken_iovec[current].iov_len);
                bytes_remaining -= broken_iovec[current].iov_len;
                temp_position[temp] += broken_iovec[current].iov_len;
                current ++;
            }
            else {
                memcpy ((IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)receive_buf +
                                         (total_bytes_recv-bytes_remaining)),
                        (IOVBASE_TYPE *)((OPAL_PTRDIFF_TYPE)rbuf[temp]+
                                         temp_position[temp]),
                        bytes_remaining);
                break;
            }
        }
    }

 exit:
    for (i=0 ; i<num_aggregators ; i++) {
        if (NULL != rbuf[i]) {
            free (rbuf[i]);
            rbuf[i] = NULL;
        }
    }
    if (NULL != req) {
        free (req);
    }
    if (NULL != recvreq) {
        free (recvreq);
    }
    if (NULL != rbuf) {
        free (rbuf);
        rbuf = NULL;
    }
    if (NULL != temp_position) {
        free (temp_position);
        temp_position = NULL;
    }

    return rc;
}

/* Print queue related function implementations */


int ompi_io_ompio_set_print_queue (print_queue **q, 
				   int queue_type){

    int  ret = OMPI_SUCCESS;

    switch(queue_type) { 

    case WRITE_PRINT_QUEUE: 
	*q = coll_write_time; 
	break;		 
    case READ_PRINT_QUEUE: 
	*q = coll_read_time; 
	break; 
    }	  

    if (NULL == q){				
	ret = OMPI_ERROR;				
    } 						
    return ret;

} 


int ompi_io_ompio_initialize_print_queue(print_queue *q){

    int ret = OMPI_SUCCESS;
    q->first = 0;
    q->last = QUEUESIZE - 1;
    q->count = 0;
    return ret;
}
int ompi_io_ompio_register_print_entry (int queue_type,
					print_entry x){
    
    int ret = OMPI_SUCCESS;
    print_queue *q=NULL;

    ret = ompi_io_ompio_set_print_queue(&q, queue_type);

    if (ret != OMPI_ERROR){
	if (q->count >= QUEUESIZE){
	    return OMPI_ERROR;
	}
	else{
	    q->last = (q->last + 1) % QUEUESIZE;
	    q->entry[q->last] = x;
	    q->count = q->count + 1;
	}
    }
    return ret;
}

int  ompi_io_ompio_unregister_print_entry (int queue_type, 
					   print_entry *x){
    
    int ret = OMPI_SUCCESS;
    print_queue *q=NULL;
    ret = ompi_io_ompio_set_print_queue(&q, queue_type);
    if (ret != OMPI_ERROR){
	if (q->count <= 0){
	    return OMPI_ERROR;
	}
	else{
	    *x = q->entry[q->first];
	    q->first = (q->first+1) % QUEUESIZE;
	    q->count = q->count - 1;
	}
    }
    return OMPI_SUCCESS;
}

int ompi_io_ompio_empty_print_queue(int queue_type){

    int ret = OMPI_SUCCESS;
    print_queue *q=NULL;
    ret =  ompi_io_ompio_set_print_queue(&q, queue_type);
    
    assert (ret != OMPI_ERROR);	
    if (q->count == 0)
	    return 1;
    else
	return 0;

    
}

int ompi_io_ompio_full_print_queue(int queue_type){
    

    int ret = OMPI_SUCCESS;
    print_queue *q=NULL;
    ret =  ompi_io_ompio_set_print_queue(&q, queue_type);
    
    assert ( ret != OMPI_ERROR);	
    if (q->count < QUEUESIZE)
	    return 0;
    else
	return 1;
    
}


int ompi_io_ompio_print_time_info(int queue_type,
				  char *name,
				  mca_io_ompio_file_t *fh){
    
    int i = 0, j=0, nprocs_for_coll = 0, ret = OMPI_SUCCESS, count = 0;
    double *time_details = NULL, *final_sum = NULL;
    double *final_max = NULL, *final_min = NULL;
    double *final_time_details=NULL;
    print_queue *q=NULL;
	
    ret =  ompi_io_ompio_set_print_queue(&q, queue_type);
 	
    assert (ret != OMPI_ERROR); 	
    nprocs_for_coll = q->entry[0].nprocs_for_coll;
    time_details = (double *) malloc (4*sizeof(double));
    if ( NULL == time_details){
	ret = OMPI_ERR_OUT_OF_RESOURCE;
	goto exit;
	
    }
   
    if (!fh->f_rank){
	
	final_min = (double *) malloc (3*sizeof(double));
	if ( NULL == final_min){
	    ret = OMPI_ERR_OUT_OF_RESOURCE;
	    goto exit;
	}

	final_max = (double *) malloc (3*sizeof(double));
	if ( NULL == final_max){
	    ret = OMPI_ERR_OUT_OF_RESOURCE;
	    goto exit;

	}

	final_sum = (double *) malloc (3*sizeof(double));
	if ( NULL == final_sum){
	    ret = OMPI_ERR_OUT_OF_RESOURCE;
	    goto exit;
	}
    
	final_time_details = 
	    (double *)malloc
	    (fh->f_size * 4 * sizeof(double));
	if (NULL == final_time_details){
	    ret = OMPI_ERR_OUT_OF_RESOURCE;
	    goto exit;
	}

	count = 4 * fh->f_size;
	for(i=0;i<count;i++){
	    final_time_details[i] = 0.0;
	}

 
    }
    
    for (i = 0; i < 4; i++){
	time_details[i] = 0.0;
    } 

    if (q->count > 0){
	for (i=0; i < q->count; i++){
	    for (j=0;j<3;j++){
		if (!fh->f_rank){
		    final_min[j] = 100000.0;
		    final_max[j] = 0.0;
		    final_sum[j] = 0.0;
		}
		time_details[j] += q->entry[i].time[j];
	    }
	    time_details[3]  = q->entry[i].aggregator;
	}
    }

    fh->f_comm->c_coll.coll_gather(time_details,
				   4,
				   MPI_DOUBLE,
				   final_time_details,
				   4,
				   MPI_DOUBLE,
				   0,
				   fh->f_comm,
				   fh->f_comm->c_coll.coll_gather_module);
	    


    if (!fh->f_rank){

	for (i=0;i<count;i+=4){
	    if (final_time_details[i+3] == 1){
		final_sum[0] += final_time_details[i];
		final_sum[1] += final_time_details[i+1];
		final_sum[2] += final_time_details[i+2];

		if ( final_time_details[i] < final_min[0])
		    final_min[0] = final_time_details[i];
		if ( final_time_details[i+1] < final_min[1])
		    final_min[1] = final_time_details[i+1];
		if ( final_time_details[i+2] < final_min[2])
		    final_min[2] = final_time_details[i+2];



		if ( final_time_details[i] > final_max[0])
		    final_max[0] = final_time_details[i];
		if ( final_time_details[i+1] > final_max[1])
		    final_max[1] = final_time_details[i+1];
		if ( final_time_details[i+2] > final_max[2])
		    final_max[2] = final_time_details[i+2];

	    }
	}
    
	printf ("\n# MAX-%s AVG-%s MIN-%s MAX-COMM AVG-COMM MIN-COMM",
		name, name, name);
	printf (" MAX-EXCH AVG-EXCH MIN-EXCH\n");
	printf (" %f %f %f %f %f %f %f %f %f\n\n",
		final_max[0], final_sum[0]/nprocs_for_coll, final_min[0],
		final_max[1], final_sum[1]/nprocs_for_coll, final_min[1],
		final_max[2], final_sum[2]/nprocs_for_coll, final_min[2]);
	
    }
    
 exit:
    if ( NULL != final_max){
	free(final_max);
	final_max = NULL;
    }
    if (NULL != final_min){
	free(final_min);
	final_min = NULL;
    }
    if (NULL != final_sum){
	free(final_sum);
	final_sum = NULL;
    }
    if (NULL != time_details){
	free(time_details);
	time_details = NULL;
    }

    return ret;
}