OMPI
and a language agnostic part in OPAL. The convertor is completely
moved into OPAL. This offers several benefits as described in RFC
http://www.open-mpi.org/community/lists/devel/2009/07/6387.php
namely:
- Fewer basic types (int* and float* types, boolean and wchar
- Fixing naming scheme to ompi-nomenclature.
- Usability outside of the ompi-layer.
- Due to the fixed nature of simple opal types, their information is
completely
known at compile time and therefore constified
- With fewer datatypes (22), the actual sizes of bit-field types may be
reduced
from 64 to 32 bits, allowing reorganizing the opal_datatype
structure, eliminating holes and keeping data required in convertor
(upon send/recv) in one cacheline...
This has implications to the convertor-datastructure and other parts
of the code.
- Several performance tests have been run, the netpipe latency does not
change with
this patch on Linux/x86-64 on the smoky cluster.
- Extensive tests have been done to verify correctness (no new
regressions) using:
1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and
ompi-ddt:
a. running both trunk and ompi-ddt resulted in no differences
(except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run
correctly).
b. with --enable-memchecker and running under valgrind (one buglet
when run with static found in test-suite, commited)
2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt:
all passed (except for the dynamic/ tests failed!! as trunk/MTT)
3. compilation and usage of HDF5 tests on Jaguar using PGI and
PathScale compilers.
4. compilation and usage on Scicortex.
- Please note, that for the heterogeneous case, (-m32 compiled
binaries/ompi), neither
ompi-trunk, nor ompi-ddt branch would successfully launch.
This commit was SVN r21641.
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogenhttps://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponenthttps://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
* Update to 4 space tabs where relevant (and some irrelevant white
space changes)
* Move a few constants to the left of !=/==
* Add a few {}'s are one line blocks
* Use BEGIN/END_C_DECLS
* Change /**< to /** in a few places
This commit was SVN r20177.
still-broken trunk build on common platforms (e.g., 64 bit Linux
RHEL4U4), I think it's clear that this code is not ready for
prime-time.
I'm backing out all the commits in the trunk/ompi/op tree from r17901
onwards. This code can be re-committed when compiles and runs on
common platforms.
cd ompi/op
svn merge -r 17907:17900 https://svn.open-mpi.org/svn/ompi/trunk/ompi/op .
This commit was SVN r17908.
The following SVN revision numbers were found above:
r17901 --> open-mpi/ompi@b9520e61dc
operations. Added to the reduction operations a set of reduction
functions that take 2 input buffers and one output buffer to avoid
some extra memory copies. These can't be used with user defined
operations. The intel c collective suite passes both original, and
new (new, not the user defined operations).
This commit was SVN r17901.
(sometimes after the merge with the ORTE branch), the opal_pointer_array
will became the only pointer_array implementation (the orte_pointer_array
will be removed).
This commit was SVN r17007.
to make checks for MPI-implementations fail in the right way ,-]
- check in configure.ac
- BINARY INCOMPATIBLE change to mpif-common.h
(if implemented the *right* way)
Actually OMPI_F90_CHECK takes two arguments, not three.
- Only have corresponding C-Type, if the opt. Fortran
type is really supported,
Otherwise pass ompi_mpi_unavailable to DECLARE_MPI_SYNONYM_DDT;
- Reviewed by George and Jeff
This commit was SVN r15133.
for the C++ bindings in MPI-2 p276-278 to see that MPI_BOOL should
work with MPI_LAND, MPI_LOR, and MPI_LXOR. Thanks to Andy Selle for
pointing this out.
This commit was SVN r9200.
- move files out of toplevel include/ and etc/, moving it into the
sub-projects
- rather than including config headers with <project>/include,
have them as <project>
- require all headers to be included with a project prefix, with
the exception of the config headers ({opal,orte,ompi}_config.h
mpi.h, and mpif.h)
This commit was SVN r8985.
implementation was not thread safe). See lengthy comment in
ompi/mpi/cxx/intercepts.cc::ompi_mpi_cxx_op_intercept() for a full
explanation.
This commit was SVN r8606.
MPI_UNSIGNED_LONG_LONG, MPI_LONG_LONG, and MPI_LONG_LONG_INT --
although I already had implementations of all the relevant functions
for these types. Doh!
This commit was SVN r7944.
REDUCE_SCATTER to more thoroughly check the datatype/op combination
to see if it's valid or not. If it's not, print a meaningful error
message rather than "Invalid MPI_Op" indicating what specifically
was wrong (therefore hopefully helping users track down where in the
code the problem is, and/or telling us that there's a reduction
operation combo that we don't support that we should)
- The check for whether a datatype is intrinsic needed to be updated
-- it's not sufficient to check that dtype->id < DT_MAX_PREDEFINED;
you really need to check the PREDEFINED flag on the datatype.
Thanks to George for this fix (only intrinsics have a meaningful
value in dtype->id).
This commit was SVN r7923.
at the top-level MPI API function. This allows two kinds of
scenarios:
1. MPI_Ireduce(..., op, ...);
MPI_Op_free(op);
MPI_Wait(...);
For the non-blocking collectives that we're someday planning -- to
make them analogous to non-blocking point-to-point stuff.
2. Thread 1:
MPI_Reduce(..., op, ...);
Thread 2:
MPI_Op_free(op);
Granted, for #2 to occur would tread a fine line between a correct and
erroneous MPI program, but it is possible (as long as the Op_free was
*after* MPI_reduce() had started to execute). It's more realistic
with case #1, where the Op_free() could be executed in the same thread
or a different thread.
This commit was SVN r7870.