This seems like an obvious typo: insert a missing "break" statement so
that we don't fall through to the next case.
Fixes CIDs 1362756 and 1362764.
Signed-off-by: Jeff Squyres <jsquyres@cisco.com>
Add PMIx 2.0
Remove PMIx 1.1.4
Cleanup copying of component
Add missing file
Touchup a typo in the Makefile.am
Update the pmix ext114 component
Minor cleanups and resync to master
Update to latest PMIx 2.x
Update to the PMIx event notification branch latest changes
Note that this cannot be used for MPI performance testing. It is really only useful for ORTE scaling tests. It also only works with the rsh/ssh launcher.
Ensure the returned exit status is non-zero if we fail to map
If no -np is given, but either -host and/or -hostfile was given, then error out with a message telling the user that this combination is not supported.
If -np is given, and -host is given with only one instance of each host, then default the #slots to the detected #pe's and enforce oversubscription rules.
If -np is given, and -host is given with more than one instance of a given host, then set the #slots for that host to the number of times it was given and enforce oversubscription rules. Alternatively, the #slots can be specified via "-host foo:N". I therefore believe that row #7 on Jeff's spreadsheet is incorrect.
With that one correction, this now passes all the given use-cases on that spreadsheet.
Make things behave under unmanaged allocations more like their managed cousins - if the #slots is given, then no-np shall fill things up.
Fixes#1344
This reverts commit open-mpi/ompi@f7257a8310.
Ensure that we properly cleanup the session directory tree. Prior code had issues with symlinks, especially if the file that the link points to was already removed as we traverse the tree. Also found that the dirent checks for directory type weren't fully portable, and so fall back to the stat-based approach which is known to be portable.
Fix singularity singletons by detecting we are in a container and properly setting the pmix selection to pick the isolated component. Remove a stale restriction blocking use of the sm btl
* Clean up the DVM so it continues to run even when applications error out and we would ordinarily abort the daemons.
* Create a new errmgr component for the DVM to handle the differences.
* Cleanup the DVM state component.
* Add ORTE bindings directory and brief README
* Pass a local tool index around to match jobs.
* Pass the jobid on job completion.
* Fix initialization logic.
* Add framework for python wrapper.
* Fix terminate-with-non-zero-exit behavior so it properly terminates only the indicated procs, notifies orte-submit, and orte-dvm continues executing.
* Add some missing options to orte-dvm
* Fix a bug in -host processing that caused us to ignore the #slots designator. Add a new attribute to indicate "do not expand the DVM" when submitting job spawn requests.
* It actually makes no sense that we treat the termination of all children differently than terminating the children of a specific job - it only creates confusion over the difference in behavior. So terminate children the same way regardless.
Extend the cmd_line utility to easily allow layering of command line definitions
Catch up with ORTE interface change and make build more generic.
Disable "fixed dvm" logic for now.
Add another cmd_line function to merge a table of cmd line options with another one, reporting as errors any duplicate entries. Use this to allow orterun to reuse the orted_submit code
Fix the "fixed_dvm" logic by ensuring we reset num_new_daemons to zero. Also ensure that the nidmap is sent with the first job so the downstream daemons get the node info. Remove a duplicate cmd line entry in orterun.
Revise the DVM startup procedure to pass the nidmap only once, at the startup of the DVM. This reduces the overhead on each job launch and ensures that the nidmap doesn't get overwritten.
Add new commands to get_orted_comm_cmd_str().
Move ORTE command line options to orte_globals.[ch].
Catch up with extra orte_submit_init parameter.
Add example code.
Add documentation.
Bump version.
The nidmap and routing data must be updated prior to propagating the xcast or else the xcast will fail.
Fix the return code so it is something more expected when an error occurs. Ensure we get an error returned to us when we fail to launch for some reason. In this case, we will always get a launch_cb as we did indeed attempt to spawn it. The error code will be returned in the complete_cb.
Fix the return code from orte_submit_job - it was returning the tracker index instead of "success". Take advantage of ORTE's pretty-print capabilities to provide a nice error output explaining why we failed to launch. Ensure we always get a launch_cb when we fail to launch, but no complete_cb as the job never launched.
Extend the error reporting capability to job completion as well.
Add index parameter to orte_submit_job().
Add orte_job_cancel and implement ORTE_DAEMON_TERMINATE_JOB_CMD.
Factor out dvm termination.
Parse the terminate option at tool level.
Add error string for ORTE_ERR_JOB_CANCELLED.
Add some safeguards.
Cleanup and/of comments.
Enable the return.
Properly ORTE_DECLSPEC orte_submit_halt.
Add orte_submit_halt and orte_submit_cancel to interface.
Use the plm interface to terminate the job
converting an opal_process_name_t means the loss of one bit,
it was decided to restrict the local job id to 15 bits, so the
useful information of an opal_process_name_t can fit in 63 bits.
This required modifying the mca_component_select function to actually check the return code on a component query - it was blissfully ignoring it.
Also do a little cleanup to avoid bombarding the user with multiple error messages.
Thanks to Patrick Begou for reporting the problem
Bring Slurm PMI-1 component online
Bring the s2 component online
Little cleanup - let the various PMIx modules set the process name during init, and then just raise it up to the ORTE level. Required as the different PMI environments all pass the jobid in different ways.
Bring the OMPI pubsub/pmi component online
Get comm_spawn working again
Ensure we always provide a cpuset, even if it is NULL
pmix/cray: adjust cray pmix component for pmix
Make changes so cray pmix can work within the integrated
ompi/pmix framework.
Bring singletons back online. Implement the comm_spawn operation using pmix - not tested yet
Cleanup comm_spawn - procs now starting, error in connect_accept
Complete integration
* don't pass --tree-spawn to the orted cmd line. If someone doesn't want tree-spawn, it shows up as an MCA param anyway
* ensure state/orted component disqualifies itself from CM operations
* clarify the DVM proc_type definitions
* ensure we stop littering the tmp dir with session directories
This commit does two things. It removes checks for C99 required
headers (stdlib.h, string.h, signal.h, etc). Additionally it removes
definitions for required C99 types (intptr_t, int64_t, int32_t, etc).
Signed-off-by: Nathan Hjelm <hjelmn@me.com>
Changing the client to leave its socket as blocking during the connect doesn't solve the problem by itself - you also have to introduce a sleep delay once the backlog is hit to avoid simply machine-gunning your way thru retries. This gets somewhat difficult to adjust as you don't want to unnecessarily prolong startup time.
We've solved this before by adding a listening thread that simply reaps accepts and shoves them into the event library for subsequent processing. This would resolve the problem, but meant yet another daemon-level thread. So I centralized the listening thread support and let multiple elements register listeners on it. Thus, each daemon now has a single listening thread that reaps accepts from multiple sources - for now, the orte/pmix server and the oob/usock support are using it. I'll add in the oob/tcp component later.
This still didn't fully resolve the SMP problem, especially on coprocessor cards (e.g., KNC). Removing the shared memory dstore support helped further improve the behavior - it looks like there is some kind of memory paging issue there that needs further understanding. Given that the shared memory support was about to be lost when I bring over the PMIx integration (until it is restored in that library), it seemed like a reasonable thing to just remove it at this point.
A few uninitialized common symbols are remaining (generated by flex) :
* orte/mca/rmaps/rank_file/rmaps_rank_file_lex.c: orte_rmaps_rank_file_leng
* orte/mca/rmaps/rank_file/rmaps_rank_file_lex.c: orte_rmaps_rank_file_text
* orte/util/hostfile/hostfile_lex.c: orte_util_hostfile_leng
* orte/util/hostfile/hostfile_lex.c: orte_util_hostfile_text
We recognize that this means other users of OPAL will need to "wrap" the opal_process_name_t if they desire to abstract it in some fashion. This is regrettable, and we are looking at possible alternatives that might mitigate that requirement. Meantime, however, we have to put the needs of the OMPI community first, and are taking this step to restore hetero and SPARC support.
These two macros set the prefix for the OPAL and ORTE libraries,
respectively. Specifically, the OPAL library will be named
libPREFIXopen-pal.la and the ORTE library will be named
libPREFIXopen-rte.la.
These macros must be called, even if the prefix argument is empty.
The intent is that Open MPI will call these macros with an empty
prefix, but other projects (such as ORCM) will call these macros with
a non-empty prefix. For example, ORCM libraries can be named
liborcm-open-pal.la and liborcm-open-rte.la.
This scheme is necessary to allow running Open MPI applications under
systems that use their own versions of ORTE and OPAL. For example,
when running MPI applications under ORTE, if the ORTE and OPAL
libraries between OMPI and ORCM are not identical (which, because they
are released at different times, are likely to be different), we need
to ensure that the OMPI applications link against their ORTE and OPAL
libraries, but the ORCM executables link against their ORTE and OPAL
libraries.
the OPAL and ORTE libraries. This is required by projects such as ORCM
that have their own ORTE and OPAL libraries in order to avoid library
confusion. By renaming their version of the libraries, the OMPI
applications can correctly dynamically load the correct one for their
build."
This reverts commit 63f619f871.
WHAT: Merge the PMIx branch into the devel repo, creating a new
OPAL “lmix” framework to abstract PMI support for all RTEs.
Replace the ORTE daemon-level collectives with a new PMIx
server and update the ORTE grpcomm framework to support
server-to-server collectives
WHY: We’ve had problems dealing with variations in PMI implementations,
and need to extend the existing PMI definitions to meet exascale
requirements.
WHEN: Mon, Aug 25
WHERE: https://github.com/rhc54/ompi-svn-mirror.git
Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding.
All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level.
Accordingly, we have:
* created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations.
* Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported.
* Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint
* removed the prior OMPI/OPAL modex code
* added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform.
* retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand
This commit was SVN r32570.
Also discovered that the rsh launcher is not picking up --enable-orterun-prefix-by-default when invoked during singleton comm_spawn, but I was unable to see why that was happening and ran out of time.
cmr=v1.8.2:reviewer=rhc
This commit was SVN r32229.
We have been getting several requests for new collectives that need to be inserted in various places of the MPI layer, all in support of either checkpoint/restart or various research efforts. Until now, this would require that the collective id's be generated at launch. which required modification
s to ORTE and other places. We chose not to make collectives reusable as the race conditions associated with resetting collective counters are daunti
ng.
This commit extends the collective system to allow self-generation of collective id's that the daemons need to support, thereby allowing developers to request any number of collectives for their work. There is one restriction: RTE collectives must occur at the process level - i.e., we don't curren
tly have a way of tagging the collective to a specific thread. From the comment in the code:
* In order to allow scalable
* generation of collective id's, they are formed as:
*
* top 32-bits are the jobid of the procs involved in
* the collective. For collectives across multiple jobs
* (e.g., in a connect_accept), the daemon jobid will
* be used as the id will be issued by mpirun. This
* won't cause problems because daemons don't use the
* collective_id
*
* bottom 32-bits are a rolling counter that recycles
* when the max is hit. The daemon will cleanup each
* collective upon completion, so this means a job can
* never have more than 2**32 collectives going on at
* a time. If someone needs more than that - they've got
* a problem.
*
* Note that this means (for now) that RTE-level collectives
* cannot be done by individual threads - they must be
* done at the overall process level. This is required as
* there is no guaranteed ordering for the collective id's,
* and all the participants must agree on the id of the
* collective they are executing. So if thread A on one
* process asks for a collective id before thread B does,
* but B asks before A on another process, the collectives will
* be mixed and not result in the expected behavior. We may
* find a way to relax this requirement in the future by
* adding a thread context id to the jobid field (maybe taking the
* lower 16-bits of that field).
This commit includes a test program (orte/test/mpi/coll_test.c) that cycles 100 times across barrier and modex collectives.
This commit was SVN r32203.
This won't transition cleanly to the 1.8 series, and may represent too much change, so we'll have to (a) evaluate whether or not to bring it over (once it demonstrates that it does indeed solve the problem), and (b) develop a custom patch for that purpose.
Refs trac:4717
This commit was SVN r32063.
The following Trac tickets were found above:
Ticket 4717 --> https://svn.open-mpi.org/trac/ompi/ticket/4717