`ompi_group_t::grp_proc_pointers[i]` may have sentinel values even
for processes which reside in the local node because the array for
`MPI_COMM_WORLD` is set up before `ompi_proc_complete_init`, which
allocates `ompi_proc_t` objects for processes reside in the local
node, is called in `MPI_INIT`. So using `ompi_proc_is_sentinel`
against `ompi_group_t::grp_proc_pointers[i]` in order to determine
whether the process resides in a remote node is not appropriate.
This bug sometimes causes an `MPI_ERR_RMA_SHARED` error when
`MPI_WIN_ALLOCATE_SHARED` is called, where sm OSC uses
`ompi_group_have_remote_peers`.
Signed-off-by: KAWASHIMA Takahiro <t-kawashima@jp.fujitsu.com>
MPI_AINT_ADD and MPI_AINT_DIFF are functions and must be declared as
externals with the proper return type. This is already done properly
in the mpi and mpi_f08 modules; these declarations for these functions
were only missing from mpif.h (i.e., mpif-externals.h).
Thanks to Aboorva Devarajan (@AboorvaDevarajan) for the bug report.
Signed-off-by: Jeff Squyres <jsquyres@cisco.com>
The direct modex operation is slow, especially at scale for even modestly-connected applications. Likewise, blocking in MPI_Init while we wait for a full modex to complete takes too long. However, as George pointed out, there is a middle ground here. We could kickoff the modex operation in the background, and then trap any modex_recv's until the modex completes and the data is delivered. For most non-benchmark apps, this may prove to be the best of the available options as they are likely to perform other (non-communicating) setup operations after MPI_Init, and so there is a reasonable chance that the modex will actually be done before the first modex_recv gets called.
Once we get instant-on-enabled hardware, this won't be necessary. Clearly, zero time will always out-perform the time spent doing a modex. However, this provides a decent compromise in the interim.
This PR changes the default settings of a few relevant params to make "background modex" the default behavior:
* pmix_base_async_modex -> defaults to true
* pmix_base_collect_data -> continues to default to true (no change)
* async_mpi_init - defaults to true. Note that the prior code attempted to base the default setting of this value on the setting of pmix_base_async_modex. Unfortunately, the pmix value isn't set prior to setting async_mpi_init, and so that attempt failed to accomplish anything.
The logic in MPI_Init is:
* if async_modex AND collect_data are set, AND we have a non-blocking fence available, then we execute the background modex operation
* if async_modex is set, but collect_data is false, then we simply skip the modex entirely - no fence is performed
* if async_modex is not set, then we block until the fence completes (regardless of collecting data or not)
* if we do NOT have a non-blocking fence (e.g., we are not using PMIx), then we always perform the full blocking modex operation.
* if we do perform the background modex, and the user requested the barrier be performed at the end of MPI_Init, then we check to see if the modex has completed when we reach that point. If it has, then we execute the barrier. However, if the modex has NOT completed, then we block until the modex does complete and skip the extra barrier. So we never perform two barriers in that case.
HTH
Ralph
Signed-off-by: Ralph Castain <rhc@open-mpi.org>
This PR renames the common library for OFI libfabric from
libfabric to ofi. There are a number of reasons this
is good to do:
1) its shorter and replaces 9 characters with three for
function names for what may eventually be a fairly extensive interface
2) OFI is the term used for MTL and RML components that use
the OFI libfabric interface
3) A planned OSC component will also use the OFI term.
4) Other HPC libraries that can use OFI libfabric tend to use
the term "ofi" internally and also in their configure options
relevant to OFI libfabric (i.e. MPICH/CH4, Intel MPI, Sandia SHMEM)
There seem to be comments in places in the Open MPI source
code that indicate that this common library will be going away.
Far from it as we will want to be able to share things like
AV objects between OMPI and possibly OSHMEM components that
use the OFI libfabric interface.
This PR also adds a synonym to the --with-libfabric(-libdir)
configury options: --with-ofi and with-ofi-libdir.
Signed-off-by: Howard Pritchard <howardp@lanl.gov>
since Open MPI now requires a C99, and ptrdiff_t type is part of C99,
there is no more need for the abstract OPAL_PTRDIFF_TYPE type.
Signed-off-by: Gilles Gouaillardet <gilles@rist.or.jp>
* Complete rewrite of opal_pointer_array
Instead of a cache oblivious linear search use a bits array
to speed up the management of the free space. As a result we
slightly increase the memory used by the structure, but we get a
significant boost in performance.
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
* Do not register datatypes in the f2c translation table.
The registration is now done up into the Fortran layer, by
forcing a call to MPI_Type_c2f.
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
Array sizes of `array_of_gsizes`, `array_of_distribs`, `array_of_dargs`,
and `array_of_psizes` parameters of the `ompi_datatype_create_darray`
function (and `MPI_TYPE_CREATE_DARRAY`) are all `ndims`.
`ndims` are `i[2]`, not `i[0]`. See MPI-3.1 p.122.
Because this function `__ompi_datatype_create_from_args` is used by
pt2pt OSC, using a datatype created by `MPI_TYPE_CREATE_DARRAY` for
`MPI_(R)(GET_)ACCUMULATE` caused a segmentation fault or something
on a target process.
Signed-off-by: KAWASHIMA Takahiro <t-kawashima@jp.fujitsu.com>
The ompi tree should be runtime independent, but over time a few
ORTE depedent definitions and functions have escaped into the ompi
tree. I'm working on my own runtime so I've used this as an opportunity
to get rid of ORTE dependencies in the ompi/ tree. I still need to go
back and change orte to conform to the new world and these changes are
untested, but I can now compile (but not link) without orte so I'm
commiting this changeset.
Signed-off-by: Noah Evans <noah.evans@gmail.com>
Adds:
- enabling/disabling of timings throught environment variable `OMPI_TIMING_ENABLE`
- output format: [file name]:[function name]:[description]: avg/min/max
- dynamically extending array of results for case then inited size was exhausted
- catch and collect errors
- cleanup
Note:
For use feature need to configure with `--enable-timings`
and set env `OMPI_TIMING_ENABLE = 1`
Signed-off-by: Boris Karasev <karasev.b@gmail.com>
This is an extension of OPAL timing framework that allows to use
MPI_reduce to provide the compact representation of the collected
timings throughout the whole application.
NOTE: the functionality is disabled now, it will be enabled after
the runtime verification.
Signed-off-by: Artem Polyakov <artpol84@gmail.com>
* See https://github.com/open-mpi/ompi/issues/3003 for a discussion about
this patch. Once we get a better version in place we can revert this
change.
Signed-off-by: Joshua Hursey <jhursey@us.ibm.com>