(sometimes after the merge with the ORTE branch), the opal_pointer_array
will became the only pointer_array implementation (the orte_pointer_array
will be removed).
This commit was SVN r17007.
about linkers, have all OPAL, ORTE, and OMPI components '''not'' link
against the OPAL, ORTE, or OMPI libraries.
See ttp://www.open-mpi.org/community/lists/users/2007/10/4220.php for
details (or https://svn.open-mpi.org/trac/ompi/wiki/Linkers for a
better-formatted version of the same info).
This commit was SVN r16968.
yesterday. This actually exposed a very, very long-standing bug where
part of the coll base was incorrectly checking the coll API version
against the MCA API version. When coll went to v1.1 (yesterday) and
was no longer the same as the MCA v1.0, the test started failing.
This commit fixes to check for v1.1 everywhere in the coll base, and
to ensure to check coll framework/API version numbers against coll
framework/API version numbers (vs. against the MCA API version
number).
This commit was SVN r16373.
used at nce (up to one unique collective module per collective function).
Matches r15795:15921 of the tmp/bwb-coll-select branch
This commit was SVN r15924.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r15795
r15921
switching:
0 0
/ \ \ / \ \
1 \ \ --> 4 \ \
/ \ \ / \ \
3 2 \ 3 2 \
4 1
(duh). The first form is the bmtree suitable for bcast, but the latter is better for reduce.
Updating default decision function accordingly.
This commit was SVN r15422.
- adding linear algorithm with synchronization for gather.
This algorithm prevents congestion at root process, but introduces
synchronization (serializes non-root processes, but allows messages
to arrive from two processes at the same time).
It performed better than binomial and linear algorithms for large message,
and intermediate and large communicator sizes.
- Updating MPI_Gather decision function to reflect performance results
from MX. I will perform more measurements though - so this one can
change.
This commit was SVN r15165.
* Require Autoconf 2.60 or higher and remove some cruft
required for AC 2.59 or the AC 2.59 / AC 2.60 mix
* Remove a bunch of now unnecessary AC_SUBST calls
* Use the libtool-provided variables for the -I and
library to use when compiling against ltdl
Fixes trac:1000
This commit was SVN r14652.
The following Trac tickets were found above:
Ticket 1000 --> https://svn.open-mpi.org/trac/ompi/ticket/1000
- Removing "small" message size limit because it really does not relate to the eager size
accross the board.
Now, the leaf nodes in generalized reduce will use blocking send (DEFAULT/ORIGINAL BEHAVIOR)
either when the maximum number of outstanding requests is 0 or
when the total number of segments is less than the maximum number of outstanding requests.
Otherwise, it will send messages using non-blocking synchronized send operation.
This commit was SVN r14572.
This "feature" is disabled by default and it should not affect the current performance.
In case when the message size is large and segment size is smaller than eager size for particular interface,
the leaf nodes in generalized reduce function can overflood parent nodes by sending all segments without
any synchronization. This can cause the parent to have HIGH number of unexpected messages (think 16MB
message with 1KB segments for example). In case of binomial algorithm root node always has at least one
child which is leaf, so this can potentially affect the root's performance significantly [Especially in
large communicators where root may have quite a few children (binomial tree for example)].
When the segment size is bigger than the eager size, rendezvous protocol ensures that this does
not happen so it is not necessary.
Originally, the problem was exposed in "infinite" bucket allocator clean up time for "small" segment sizes
(which may explain some "deadlocks" on Thunderbird tests).
To prevent this, we allow user to specify mca parameter "--mca coll_tuned_reduce_algorithm_max_requests NUM"
this limits number of outstanding messages from a leaf node in generalized reduce to the parent to NUM.
Messages are sent as non-blocking synchrnous messages, so syncronization happens at "wait" time.
The synchronization actually improved performance of pipeline and binomial algorithm for large message sizes
with 1KB segments over MX, but I need to test it some more to make sure it is consistent.
Since there is no easy way to find out what is "the eager" size for particular btl, I set the limit to 4000B.
If message/individual segment size is greater than 4000B - we will not use this feature. This variable may
or may not be exposed as mca parameter later...
I did not have any problems running it and both "default" and "synchronous" tests passed Intel Reduce* tests
up to 80 processes (over MX).
This commit was SVN r14518.
Per discussions with Brian and Ralph, make a slight correction in
where components are installed. Use $pkglibdir, not $libdir/openmpi,
so that when compiled in the orte trunk, components are installed to
the right directory (because the component search patch is checking
$pkglibdir).
This commit was SVN r14345.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r14289
This merge adds Checkpoint/Restart support to Open MPI. The initial
frameworks and components support a LAM/MPI-like implementation.
This commit follows the risk assessment presented to the Open MPI core
development group on Feb. 22, 2007.
This commit closes trac:158
More details to follow.
This commit was SVN r14051.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r13912
The following Trac tickets were found above:
Ticket 158 --> https://svn.open-mpi.org/trac/ompi/ticket/158
In that case, sendcount and sendtype are not valid and we need to use
recvcount and recvtype.
This commit fixes trac:943. Reviewed by Jelena Pjesivac-Grbovic.
This commit was SVN r14022.
The following Trac tickets were found above:
Ticket 943 --> https://svn.open-mpi.org/trac/ompi/ticket/943
- fixing line lengths and some of the comments
- possible bug fix (but I do not think we exposed it in any tests so far)
temporary buffers were allocated as multiples of extent instead of
true_extent + (count -1) * extent.
Everything is still passing Intel tests over tcp and btl mx up to 64 nodes.
This commit was SVN r13956.
Currently 3 algorithms are available:
- non-overlapping, reduce + scatterv, (works for non-commutative operations)
- recursive halving algorithm (copied from basic module)
- ring algorithm (similar to allreduce ring, for large messages)
This commit was SVN r13929.
Algorithm allows user to specify the segment size to be used for computation/communication overlap.
The additional memory requirement for the algorithm is 2 x segment size.
It performed well for (really) large message sizes over MX and it passed intel Allreduce_c and Allreduce_loc_c tests.
This commit was SVN r13832.
- the block sizes are computed in more uniformn way.
The first k blocks may be 1 element larger than the remaining blocks.
The algorithm passed Intel Allreduce_c and Allreduce_loc_c tests, and
IMB-3.2 Allreduce, over TCP and both btl and mtl MX (up to 128 processes).
The algorithm still only supports commutative operations.
This commit was SVN r13738.
outstanding requests can be limited using mca parameters.
The implementation passed Intel, IMB-3.2, and mpi_test_suite tests over
TCP and MX up to 128 processes (64 nodes), on both 32-bit and 64-bit machines.
It is not activated by default, but it should be useful for really large
communicator sizes.
This commit was SVN r13720.
Implementation passed intel: MPI_Reduce_c , MPI_Reduce_loc_c, and MPI_Reduce_user_c tests
over TCP, BTL MX, and MTL MX, as well as, mpi_test_suite Reduce tests (up to 64 nodes).
The algorithm is still not activated by decision function (will be in the near future).
This commit was SVN r13657.
The step used to iterate through buffer was function of true_extent instead of extent.
This may or may not solve ticket #689 because I am still getting failures over btl mx,
but I cannot reproduce failures over mtl mx nor tcp.
This commit was SVN r13459.
MPICH2 for "small" commutative operations in the reduce_scatter basic
implementation. "small" is currently pretty big, as it doesn't take
much to beat reduce/scatterv. Need to do much more than this for
better all around performance of MPI_Reduce_scatter, but this was enough
to solve the problems I was having.
This commit was SVN r13348.
- post isends in reverse order of posting irecvs.
if the messages arrive approximately in order, this should
minimize the time spent in matching the requests.
I did not see any performance difference over MX up to 64 nodes, but
the change makes sense and may have some impact when we have (many)
more nodes.
This commit was SVN r13337.
- Allreduce algorithms:
- Recursive doubling is used for small messages (up to 10KB) and can be used for
both commutative and non-commutative operations.
Recursive doubling passed OCC, IMB-3.2, Intel (Allreduce_c, Allreduce_loc_c, and
Allreduce_user_c), mpi_test_suite (Allreduce MIN/MAX, and Allreduce MIN/MAX with
MPI_IN_PLACE) tests on TCP up to 36 nodes and MX up to 64 nodes.
- Ring algorithms performs well for larger messages but cannot be used for
non-commutative operations. It passed the same tests as recursive doubling, except
some of the non-commutative tests in Intel benchmarks Allreduce_loc_c and Allreduce_user_c
(which was expected).
- MPI_Allreduce with new decision function passed all of the tests mentioned above.
- Cleaning up coll_tuned_util. Moving isendrecv to static inline just like sendrecv.
This commit was SVN r13252.
- removing static qualification on ompi_coll_tuned_sendrecv
- adding ompi_coll_tuned_isendrecv function which posts isend and irecv requests
These changes are separate from but necessary for new algorithms I am working on.
This commit was SVN r13161.
- utilizing coll_tuned_util functions
- setting line length to 80.
This implementation uses standard send messages (instead of synchronous ones).
The change improved our performance over MX multiple number of times, however,
there exists a small potential that last message to be sent can be delayed
(until next mpi call, which means potentially infinitely).
If this shows to be a problem, I will modify the algorithms to use synchronous
send as last operation (which will incur performance penalty again).
This commit was SVN r13071.
- in allgather algorithms I replaces irecv-isend-waitall sequence with
call to ompi_coll_tuned_sendrecv
- most of the functions in util code and allgather decision function conform to 80 character line width.
-
This commit was SVN r13069.
components that use configure.m4 for configuration or are always built.
The macro has not been needed since moving to configure types other than
configure.stub
Fixes trac:590
This commit was SVN r13031.
The following Trac tickets were found above:
Ticket 590 --> https://svn.open-mpi.org/trac/ompi/ticket/590
* Make sure that the pval always writes to the correct portion of the
lval. This only matters on 32 bit big endian machines.
* On 32 bit machines when assigning to pval, the other 4 bytes of lval
weren't being written, which could lead to bogus data
We use macros so that there aren't casts all over the code and the pval
assignment can occur to the correct 4 bytes. Refs trac:587
This commit was SVN r12974.
The following Trac tickets were found above:
Ticket 587 --> https://svn.open-mpi.org/trac/ompi/ticket/587
It contains four algorithms:
Bruck (ciel(logP) steps), Recursive Doubling (log(P) for power-of-2 processes), Ring (P-1 steps),
and Neighbor Exchange (P/2 steps for even number of processes).
All algorithms passed occ, IMB-2.3, and intel verification tests from ompi-tests/ for up to 56 processes.
The fixed decision function is based on results collected over MX on the Grig cluster at
the University of Tennessee at Knoxville.
I have also added (and commented out) copy of MPICH2 decision function for allgather
(from their IJHPCA 2005 paper).
This commit was SVN r12910.
Accordingly, there are new APIs to the name service to support the ability to get a job's parent, root, immediate children, and all its descendants. In addition, the terminate_job, terminate_orted, and signal_job APIs for the PLS have been modified to accept attributes that define the extent of their actions. For example, doing a "terminate_job" with an attribute of ORTE_NS_INCLUDE_DESCENDANTS will terminate the given jobid AND all jobs that descended from it.
I have tested this capability on a MacBook under rsh, Odin under SLURM, and LANL's Flash (bproc). It worked successfully on non-MPI jobs (both simple and including a spawn), and MPI jobs (again, both simple and with a spawn).
This commit was SVN r12597.
- consistent arguments checking (not allowing to select an algorithm which
is not available)
- consistent way of computing the segcount (number of datatypes by segment).
- small cleanups.
- more informative debugging messages.
This commit was SVN r12545.
description. Most of the bcast algorithms can be completed using this
generic function once we create the tree structure. Add all kind of
trees.
There are 2 versions of the generic bcast function. One using overlapping
between receives (for intermediary nodes) and then blocking sends to all
childs and another where all sends are non blocking. I still have to
figure out which one give the smallest overhead.
This commit was SVN r12530.
N gatherv's:
for (i = 0 ... size)
MPI_Gatherv(..., root = i, ...)
The new algorithm simply does (effectively):
MPI_Gatherv(..., root = 0, ...)
MPI_Bcast(..., root = 0, ...)
This commit was SVN r12469.
allocation logic is completely done outside the data-type engine (in the PML) there is
no need for any special case inside the data-type engine. There is less arguments for
the ompi_convertor_pack and ompi_convertor_unpack as well (the last field free_after is
not required anymore as there is no memory allocated in the engine itself). This change
affect all components using datatypes. I test most of them, but it might happens that I
miss some ... If it's the case please let me know (don't shoot the pianist!!).
This commit was SVN r12331.
the default decision functions (for broadcast, reduce and barrier) are based on a
high performance network (not TCP). It should give good performance (really good) for
any network having the following caracteristics: small latency (5 microseconds) and good
bandwidth (more than 1Gb/s).
+ Cleanup of the reduce algorithms, plus 2 new algorithms (binary and binomial). Now most
of the reduce algorithms use a generic tree based function for completing the reduce.
+ Added macros for computing the trees (they are used for bcast and reduce right now).
+ Allow the usage of all 5 topologies.
+ Jelena's implementation of a binary tree that can be used for non commutative operations.
Right now only the tree building function is there, it will get activated soon.
+ Some others minor cleanups.
This commit was SVN r12326.
all platforms. The only exceptions (and I will not deal with them
anytime soon) are on Windows:
- the write functions which require the length to be an int when it's
a size_t on all UNIX variants.
- all iovec manipulation functions where the iov_len is again an int
when it's a size_t on most of the UNIXes.
As these only happens on Windows, so I think we're set for now :)
This commit was SVN r12215.
size and diplacement of data-type. After this patch all data can contain size_t bytes
and the displacements are defined as ptrdiff_t. All of the files I was able to compile
have been modified to match this requirement.
This commit was SVN r12146.
George: ompi_ddt_type_size() returns a signed int only because of the
MPI spec; it will never return a negative value. So casting the
return value out of it to a (uint32_t) is safe, and makes the
comparisons be between two unsigned values.
This commit was SVN r11639.
The following SVN revision numbers were found above:
r11619 --> open-mpi/ompi@8667648a1b
todos: macroize it as we do it 10 different ways, add mca params to control handling (push up size, no change, switch off segmenting)
This commit was SVN r11619.
I know it does not make much sense but one can play around with the
performance. Numbers are available at http://www.unixer.de/research/nbcoll/perf/.
This is the first step towards collv2. Next step includes the addition
of non-blocking functions to the MPI-Layer and the collv1 interface.
It implements all MPI-1 collective algorithms in a non-blocking manner.
However, the collv1 interface does not allow non-blocking collectives so
that all collectives are used blocking by the ompi-glue layer.
I wanted to add LibNBC as a separate subdirectory, but I could not
convince the buildsystem (and had not the time). So the component looks
pretty messy. It would be great if somebody could explain me how to move
all nbc*{c,h}, and {hb,dict}*{c,h} to a seperate subdirectory.
It's .ompi_ignored because I did not test it exhaustively yet.
This commit was SVN r11401.
different macros, one for each project. Therefore, now we have OPAL_DECLSPEC,
ORTE_DECLSPEC and OMPI_DECLSPEC. Please use them based on the sub-project.
This commit was SVN r11270.
shared memory segments
* make sure to properly unlink the collectives sm bootstrap area at
shutdown
* Add missing / in the path for the mpool shared memory segment
* make sure to release the common_mmap structure in the SM btl
after unlinking the file during shutdown
This commit was SVN r10886.
yes this means it WAS possible for two nodes to choice two different algorithms
(discovered by Doug Gregor and figured out by George)
Also changed some names like size to comsize so we know which sizes we are using where
This should be updated in al versions
This commit was SVN r10601.
(1) As pointed out by Torsten after Jeff comment that there are 15 collectives yesterday.. nope.. I have 16 but
miss counted them in my ifdefs (I had two #11s). Replaces with enum...
(2) Added a readonly MCA param for how many backend algorithms are available per collective (used by benchmarker/STS)
This allowed me to remove the tuned query internal functions and replace them with ompi_coll_tuned_forced_max_algorithms[COLL].
(3) I was reading the user forced MCA params for the collectives on each comm create (module init) but I then put the
values into a global set of variables (like ompi_coll_tuned_reduce_forced_algorithm).
To fix this and make the code neater:
(a) The component looks up the MCA param indices on Open if dynamic_rules is set via the
ompi_coll_tuned_COLLECTIVE_intra_check_forced_init () call.
(b) Got rid of the ompi_coll_ompi_coll_tuned_COLLECTIVE_forced_algorithm/segmentsize/etc globals with a struct that
is now cached on the module data hung off the communicator. i.e. done right.
(c) On module init if dynamic rules enabled we call a general getvalues routine (in coll_tuned_forced.c) to get the
CURRENT values using the MCA param indices and then put them on the modules data segment.
A shorter version of getvalues exists for barrier which only needs the algorithm choice
This commit was SVN r9663.
flag, new flags to be included when convertor is initialized
- modified pml/btl module defs and added stub functions for diagnostic
output routines to dump state of queues / endpoints
- updates to data reliability pml
This commit was SVN r9329.
- move files out of toplevel include/ and etc/, moving it into the
sub-projects
- rather than including config headers with <project>/include,
have them as <project>
- require all headers to be included with a project prefix, with
the exception of the config headers ({opal,orte,ompi}_config.h
mpi.h, and mpif.h)
This commit was SVN r8985.
be locally completing. for now using synchronous calls until the new functionality is available. then will change
the code to use the new PML send flags.
This commit was SVN r8867.
this was implemented using a chain (tree followed with pipeline) by setting the chain fanout to a factor of size etc but the chain datastructure was fixed in length and if exceeded the topo create returned a null which isn't helpfull in cid next function of comdup...
Anyway two fixes, first we do have a real linear function so changed the decision function and second altered the
topo chain create to force chain fanouts of less than 1 to 1 and fanouts bigger than max to max.
next check in will change chain to dynamically allocd array (reallocable) but we shouldn't ever use a chain fanout for a linear tree anyway.
(lession must rerun all tests for all data sizes when changing decision functions)
This commit was SVN r8662.
(apparently we've been doing this in opal and orte, but not in ompi
yet). All public symbols begin with "ompi_coll_tuned_" (not
mca_coll_tuned_) except the component struct. Now this component
passes the illegal symbol report with no hits.
This commit was SVN r8589.
testing. Note that this effectively replaces the "basic" component as
the baseline collective component. Please report any problems with
this component.
If you run into problems with this component, you can disable it with:
--mca coll_tuned_priority 0
This commit was SVN r8575.
displacement (for both the inter and intra-communicator version). The
displacements in scatterv are given in multiples of the sendtype.
This fix should probably make to v1.0.1 as well?
This commit was SVN r8251.
* turns out (duh!) that there was a reason that the <projectdir>dir
variable was set in the AM conditional. If not, stupid directories
are created and not needed... duh.
This commit was SVN r8205.
component/base Makefile.am files, reducing the time configure spends
stamping out Makefiles at the end
* Install base_impl.h file when devel-headers are being installed
This commit was SVN r8200.
Lots of misc fixes: printfs->opal_output, handles fanin/out correctly for forced ops
unused vars, correct calculations on meaning of 'msgsize' for decision functions
(varies depending on algorithm), etc
This commit was SVN r8113.
go through the dynamic decision rule interface.
(forced algorithms are set with MCA params)
fixed some silly verbose output with wrong func name in it etc
updates to fixed dec rules.
This commit was SVN r7940.
modules, if its priority is zero (the default value). Reason for that is
+ if there is no other module with a priority > 0, the hierarchical
collective module has a problem anyway, since it has to rely on the coll
modules of the subcommunicators. On the other hand, if its priority is
zero, it won't be chosen anyway, and we can simply save the
allreduce/allgather and comm_split operations which might occur during
hierarchy detection.
+ to improve the startup times until we have the modex thing which we
discussed with Jeff and Tim in Knoxville in place
- adding an mca parameter indicating a symmetric configuration. This can
speed up startup times, since each process can conclude from its data onto
the data of the other processes -> no need for the allreduce operations. Per
default this parameter is set to "no".
This commit was SVN r7932.