Convert the predefined MPI object padding to a fixed number of bytes
(vs. a multiple of sizeof(void*)) so that the padding is the same size
between 32 and 64 bit builds. I.e., we won't have a situation where
we've run out of padding in 32 bit builds but still have more space
available in 64 bit builds.
Fixes#3610
Signed-off-by: Jeff Squyres <jsquyres@cisco.com>
The expected sequence of events for processing info during object creation
is that if there's an incoming info arg, it is opal_info_dup()ed into the obj
at obj->s_info first. Then interested components register callbacks for
keys they want to know about using opal_infosubscribe_infosubscribe().
Inside info_subscribe_subscribe() the specified callback() is called with
whatever matching k/v is in the object's info, or with the default. The
return string from the callback goes into the new k/v stored in info, and
the input k/v is saved as __IN_<key>/<val>. It's saved the same way
whether the input came from info or whether it was a default. A null return
from the callback indicates an ignored key/val, and no k/v is stored for
it, but an __IN_<key>/<val> is still kept so we still have access to the
original.
At MPI_*_set_info() time, opal_infosubscribe_change_info() is used. That
function calls the registered callbacks for each item in the provided info.
If the callback returns non-null, the info is updated with that k/v, or if
the callback returns null, that key is deleted from info. An __IN_<key>/<val>
is saved either way, and overwrites any previously saved value.
When MPI_*_get_info() is called, opal_info_dup_mpistandard() is used, which
allows relatively easy changes in interpretation of the standard, by looking
at both the <key>/<val> and __IN_<key>/<val> in info. Right now it does
1. includes system extras, eg k/v defaults not expliclty set by the user
2. omits ignored keys
3. shows input values, not callback modifications, eg not the internal values
Currently the callbacks are doing things like
return some_condition ? "true" : "false"
that is, returning static strings that are not to be freed. If the return
strings start becoming more dynamic in the future I don't see how unallocated
strings could support that, so I'd propose a change for the future that
the callback()s registered with info_subscribe_subscribe() do a strdup on
their return, and we change the callers of callback() to free the strings
it returns (there are only two callers).
Rough outline of the smaller changes spread over the less central files:
comm.c
initialize comm->super.s_info to NULL
copy into comm->super.s_info in comm creation calls that provide info
OBJ_RELEASE comm->super.s_info at free time
comm_init.c
initialize comm->super.s_info to NULL
file.c
copy into file->super.s_info if file creation provides info
OBJ_RELEASE file->super.s_info at free time
win.c
copy into win->super.s_info if win creation provides info
OBJ_RELEASE win->super.s_info at free time
comm_get_info.c
file_get_info.c
win_get_info.c
change_info() if there's no info attached (shouldn't happen if callbacks
are registered)
copy the info for the user
The other category of change is generally addressing compiler warnings where
ompi_info_t and opal_info_t were being used a little too interchangably. An
ompi_info_t* contains an opal_info_t*, at &(ompi_info->super)
Also this commit updates the copyrights.
Signed-off-by: Mark Allen <markalle@us.ibm.com>
ompi_communicator_t, ompi_win_t, ompi_file_t all have a super class of type opal_infosubscriber_t instead of a base/super type of opal_object_t (in previous code comm used c_base, but file used super). It may be a bit bold to say that being a subscriber of MPI_Info is the foundational piece that ties these three things together, but if you object, then I would prefer to turn infosubscriber into a more general name that encompasses other common features rather than create a different super class. The key here is that we want to be able to pass comm, win and file objects as if they were opal_infosubscriber_t, so that one routine can heandle all 3 types of objects being passed to it.
MPI_INFO_NULL is still an ompi_predefined_info_t type since an MPI_Info is part of ompi but the internal details of the underlying information concept is part of opal.
An ompi_info_t type still exists for exposure to the user, but it is simply a wrapper for the opal object.
Routines such as ompi_info_dup, etc have all been moved to opal_info_dup and related to the opal directory.
Fortran to C translation tables are only used for MPI_Info that is exposed to the application and are therefore part of the ompi_info_t and not the opal_info_t
The data structure changes are primarily in the following files:
communicator/communicator.h
ompi/info/info.h
ompi/win/win.h
ompi/file/file.h
The following new files were created:
opal/util/info.h
opal/util/info.c
opal/util/info_subscriber.h
opal/util/info_subscriber.c
This infosubscriber concept is that communicators, files and windows can have subscribers that subscribe to any changes in the info associated with the comm/file/window. When xxx_set_info is called, the new info is presented to each subscriber who can modify the info in any way they want. The new value is presented to the next subscriber and so on until all subscribers have had a chance to modify the value. Therefore, the order of subscribers can make a difference but we hope that there is generally only one subscriber that cares or modifies any given key/value pair. The final info is then stored and returned by a call to xxx_get_info.
The new model can be seen in the following files:
ompi/mpi/c/comm_get_info.c
ompi/mpi/c/comm_set_info.c
ompi/mpi/c/file_get_info.c
ompi/mpi/c/file_set_info.c
ompi/mpi/c/win_get_info.c
ompi/mpi/c/win_set_info.c
The current subscribers where changed as follows:
mca/io/ompio/io_ompio_file_open.c
mca/io/ompio/io_ompio_module.c
mca/osc/rmda/osc_rdma_component.c (This one actually subscribes to "no_locks")
mca/osc/sm/osc_sm_component.c (This one actually subscribes to "blocking_fence" and "alloc_shared_contig")
Signed-off-by: Mark Allen <markalle@us.ibm.com>
Conflicts:
AUTHORS
ompi/communicator/comm.c
ompi/debuggers/ompi_mpihandles_dll.c
ompi/file/file.c
ompi/file/file.h
ompi/info/info.c
ompi/mca/io/ompio/io_ompio.h
ompi/mca/io/ompio/io_ompio_file_open.c
ompi/mca/io/ompio/io_ompio_file_set_view.c
ompi/mca/osc/pt2pt/osc_pt2pt.h
ompi/mca/sharedfp/addproc/sharedfp_addproc.h
ompi/mca/sharedfp/addproc/sharedfp_addproc_file_open.c
ompi/mca/topo/treematch/topo_treematch_dist_graph_create.c
ompi/mpi/c/lookup_name.c
ompi/mpi/c/publish_name.c
ompi/mpi/c/unpublish_name.c
opal/mca/mpool/base/mpool_base_alloc.c
opal/util/Makefile.am
* Complete rewrite of opal_pointer_array
Instead of a cache oblivious linear search use a bits array
to speed up the management of the free space. As a result we
slightly increase the memory used by the structure, but we get a
significant boost in performance.
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
* Do not register datatypes in the f2c translation table.
The registration is now done up into the Fortran layer, by
forcing a call to MPI_Type_c2f.
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
* Add a configure time option to rename libmpi(_FOO).*
- `--with-libmpi-name=STRING`
* This commit only impacts the installed libraries.
Internal, temporary libraries have not been renamed to limit the
scope of the patch to only what is needed.
For example:
```shell
shell$ ./configure --with-libmpi-name=wookie
...
shell$ find . -name "libmpi*"
shell$ find . -name "libwookie*"
./lib/libwookie.so.0.0.0
./lib/libwookie.so.0
./lib/libwookie.so
./lib/libwookie.la
./lib/libwookie_mpifh.so.0.0.0
./lib/libwookie_mpifh.so.0
./lib/libwookie_mpifh.so
./lib/libwookie_mpifh.la
./lib/libwookie_usempi.so.0.0.0
./lib/libwookie_usempi.so.0
./lib/libwookie_usempi.so
./lib/libwookie_usempi.la
shell$
```
Adding a mutex to thje ompi_file_t structure allows to have a per-file handle
mutex lock for both ROMIO and OMPIO. I double checked that the size of the
ompi_file_t structure is still below the size of the predefined_file_t structure,
so we should be good from the backward compatibility perspective.
Also, remove the lock/unlock in the file_open ompi-interface routines of romio314.
The global lock in the romio component does probably not work, it is easy to construct a testcase where two threads perform collective I/O operations on different file handles. With a global lock it is easy to deadlock. THe lock has to be at least on the file handle basis.
move the mutex to file/file.c to avoid duplicate symbol problem in file_open.c pfile_open.c
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
other request-using frameworks.
- Rather than having mpi/c/* functions allocate requests explicitly,
pass the MPI_Request* down to the I/O component and have it
perform the allocation.
- While the I/O base provides a base request which can be used,
it is not required and all request management occurs within
the component.
- Push progress management into the component, rather than having it
happen in the base. Progress functions are now easily registered,
and not all (ie, the one existing) components use progress functions
in any rational way.
ROMIO switched to generalized requests instead of MPIO_Requests many
moons ago, and Open MPI now uses ROMIO's generalized requests, so there
is no reason to wrap those requests (which are OMPI requests) in another
level of request.
Now the file function passes the MPI_Request* to the ROMIO component,
which passes it to the underlying ROMIO function, which calls
MPI_Grequest_start to create an OMPI request, which is what gets set
as the request to the user. Much cleaner.
This patch has two motivations. One, a whole heck of a lot of code
just got removed, and request handling is now much cleaner for I/O
components. Two, by adding support for Argonne's proposed generalized
request extensions, we can allow ROMIO to provide async I/O through
generalized requests, which we couldn't rationally do in the old
setup due to the crazy request completion rules.
This commit was SVN r22235.
not end up in OPAL
- Will post an updated patch for the OMPI_ALIGNMENT_ parts (within C).
This commit was SVN r21342.
The following SVN revision numbers were found above:
r21330 --> open-mpi/ompi@95596d1814
into the OPAL namespace, eliminating cases like opal/util/arch.c
testing for ompi_fortran_logical_t.
As this is processor- and compiler-related information
(e.g. does the compiler/architecture support REAL*16)
this should have been on the OPAL layer.
- Unifies f77 code using MPI_Flogical instead of opal_fortran_logical_t
- Tested locally (Linux/x86-64) with mpich and intel testsuite
but would like to get this week-ends MTT output
- PLEASE NOTE: configure-internal macro-names and
ompi_cv_ variables have not been changed, so that
external platform (not in contrib/) files still work.
This commit was SVN r21330.
OMPI_* to OPAL_*. This allows opal layer to be used more independent
from the whole of ompi.
NOTE: 9 "svn mv" operations immediately follow this commit.
This commit was SVN r21180.
get bitten by header depending on having already included
the corresponding [opal|orte|ompi]_config.h header.
When separating, things like [OPAL|ORTE|OMPI]_DECLSPEC
are missed.
Script to add the corresponding header in front of all following
(taking care of possible #ifdef HAVE_...)
- Including some minor cleanups to
- ompi/group/group.h -- include _after_ #ifndef OMPI_GROUP_H
- ompi/mca/btl/btl.h -- nclude _after_ #ifndef MCA_BTL_H
- ompi/mca/crcp/bkmrk/crcp_bkmrk_btl.c -- still no need for
orte/util/output.h
- ompi/mca/pml/dr/pml_dr_recvreq.c -- no need for mpool.h
- ompi/mca/btl/btl.h -- reorder to fit
- ompi/mca/bml/bml.h -- reorder to fit
- ompi/runtime/ompi_mpi_finalize.c -- reorder to fit
- ompi/request/request.h -- additionally need ompi/constants.h
- Tested on linux/x86-64
This commit was SVN r20720.
Often, orte/util/show_help.h is included, although no functionality
is required -- instead, most often opal_output.h, or
orte/mca/rml/rml_types.h
Please see orte_show_help_replacement.sh commited next.
- Local compilation (Linux/x86_64) w/ -Wimplicit-function-declaration
actually showed two *missing* #include "orte/util/show_help.h"
in orte/mca/odls/base/odls_base_default_fns.c and
in orte/tools/orte-top/orte-top.c
Manually added these.
Let's have MTT the last word.
This commit was SVN r20557.
After much work by Jeff and myself, and quite a lot of discussion, it has become clear that we simply cannot resolve the infinite loops caused by RML-involved subsystems calling orte_output. The original rationale for the change to orte_output has also been reduced by shifting the output of XML-formatted vs human readable messages to an alternative approach.
I have globally replaced the orte_output/ORTE_OUTPUT calls in the code base, as well as the corresponding .h file name. I have test compiled and run this on the various environments within my reach, so hopefully this will prove minimally disruptive.
This commit was SVN r18619.
such, the commit message back to the master SVN repository is fairly
long.
= ORTE Job-Level Output Messages =
Add two new interfaces that should be used for all new code throughout
the ORTE and OMPI layers (we already make the search-and-replace on
the existing ORTE / OMPI layers):
* orte_output(): (and corresponding friends ORTE_OUTPUT,
orte_output_verbose, etc.) This function sends the output directly
to the HNP for processing as part of a job-specific output
channel. It supports all the same outputs as opal_output()
(syslog, file, stdout, stderr), but for stdout/stderr, the output
is sent to the HNP for processing and output. More on this below.
* orte_show_help(): This function is a drop-in-replacement for
opal_show_help(), with two differences in functionality:
1. the rendered text help message output is sent to the HNP for
display (rather than outputting directly into the process' stderr
stream)
1. the HNP detects duplicate help messages and does not display them
(so that you don't see the same error message N times, once from
each of your N MPI processes); instead, it counts "new" instances
of the help message and displays a message every ~5 seconds when
there are new ones ("I got X new copies of the help message...")
opal_show_help and opal_output still exist, but they only output in
the current process. The intent for the new orte_* functions is that
they can apply job-level intelligence to the output. As such, we
recommend that all new ORTE and OMPI code use the new orte_*
functions, not thei opal_* functions.
=== New code ===
For ORTE and OMPI programmers, here's what you need to do differently
in new code:
* Do not include opal/util/show_help.h or opal/util/output.h.
Instead, include orte/util/output.h (this one header file has
declarations for both the orte_output() series of functions and
orte_show_help()).
* Effectively s/opal_output/orte_output/gi throughout your code.
Note that orte_output_open() takes a slightly different argument
list (as a way to pass data to the filtering stream -- see below),
so you if explicitly call opal_output_open(), you'll need to
slightly adapt to the new signature of orte_output_open().
* Literally s/opal_show_help/orte_show_help/. The function signature
is identical.
=== Notes ===
* orte_output'ing to stream 0 will do similar to what
opal_output'ing did, so leaving a hard-coded "0" as the first
argument is safe.
* For systems that do not use ORTE's RML or the HNP, the effect of
orte_output_* and orte_show_help will be identical to their opal
counterparts (the additional information passed to
orte_output_open() will be lost!). Indeed, the orte_* functions
simply become trivial wrappers to their opal_* counterparts. Note
that we have not tested this; the code is simple but it is quite
possible that we mucked something up.
= Filter Framework =
Messages sent view the new orte_* functions described above and
messages output via the IOF on the HNP will now optionally be passed
through a new "filter" framework before being output to
stdout/stderr. The "filter" OPAL MCA framework is intended to allow
preprocessing to messages before they are sent to their final
destinations. The first component that was written in the filter
framework was to create an XML stream, segregating all the messages
into different XML tags, etc. This will allow 3rd party tools to read
the stdout/stderr from the HNP and be able to know exactly what each
text message is (e.g., a help message, another OMPI infrastructure
message, stdout from the user process, stderr from the user process,
etc.).
Filtering is not active by default. Filter components must be
specifically requested, such as:
{{{
$ mpirun --mca filter xml ...
}}}
There can only be one filter component active.
= New MCA Parameters =
The new functionality described above introduces two new MCA
parameters:
* '''orte_base_help_aggregate''': Defaults to 1 (true), meaning that
help messages will be aggregated, as described above. If set to 0,
all help messages will be displayed, even if they are duplicates
(i.e., the original behavior).
* '''orte_base_show_output_recursions''': An MCA parameter to help
debug one of the known issues, described below. It is likely that
this MCA parameter will disappear before v1.3 final.
= Known Issues =
* The XML filter component is not complete. The current output from
this component is preliminary and not real XML. A bit more work
needs to be done to configure.m4 search for an appropriate XML
library/link it in/use it at run time.
* There are possible recursion loops in the orte_output() and
orte_show_help() functions -- e.g., if RML send calls orte_output()
or orte_show_help(). We have some ideas how to fix these, but
figured that it was ok to commit before feature freeze with known
issues. The code currently contains sub-optimal workarounds so
that this will not be a problem, but it would be good to actually
solve the problem rather than have hackish workarounds before v1.3 final.
This commit was SVN r18434.
(sometimes after the merge with the ORTE branch), the opal_pointer_array
will became the only pointer_array implementation (the orte_pointer_array
will be removed).
This commit was SVN r17007.
MPI_FILE_GET_INFO should return the info currently in use, not the one
used to create the file handle. ROMIO adds a bunch of keys, so you can
create a file handle with MPI_INFO_NULL and have MPI_FILE_GET_INFO return
something totatlly different.
This commit was SVN r10312.
- move files out of toplevel include/ and etc/, moving it into the
sub-projects
- rather than including config headers with <project>/include,
have them as <project>
- require all headers to be included with a project prefix, with
the exception of the config headers ({opal,orte,ompi}_config.h
mpi.h, and mpif.h)
This commit was SVN r8985.
originally suggested by Ralf Wildenhues, to try to speed autogen, configure,
and make (and possibly even make install). Use automake's include directive
to drastically reduce the number of Makefile files (although the number of
Makefile.am files is the same - most are just included in a top-level
Makefile.am). Also use an Automake SUBDIRs feature to eliminate the
dynamic-mca tree, which was no longer really needed. This makes adding
a framework easier (since you don't have to remember the dynamic-mca
tree) and makes building faster (as make doesn't have to recurse through
the dynamic-mca tree)
This commit was SVN r7777.
AM_INIT_AUTOMAKE, instead of the deprecated version.
* Work around dumbness in modern AC_INIT that requires the version
number to be set at autoconf time (instead of at configure time, as
it was before). Set the version number, minus the subversion r number,
at autoconf time. Override the internal variables to include the r
number (if needed) at configure time. Basically, the right thing
should always happen. The only place it might not is the version
reported as part of configure --help will not have an r number.
* Since AM_INIT_AUTOMAKE taks a list of options, no need to specify
them in all the Makefile.am files.
* Addes support for subdir-objects, meaning that object files are put
in the directory containing source files, even if the Makefile.am is
in another directory. This should start making it feasible to
reduce the number of Makefile.am files we have in the tree, which
will greatly reduce the time to run autogen and configure.
This commit was SVN r7211.