1
1
Граф коммитов

8 Коммитов

Автор SHA1 Сообщение Дата
Ralph Castain
869041f770 Purge whitespace from the repo 2015-06-23 20:59:57 -07:00
Ralph Castain
a200e4f865 As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***

Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.

***************************************************************************************

I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.

The code is in  https://bitbucket.org/rhc/ompi-oob2


WHAT:    Rewrite of ORTE OOB

WHY:       Support asynchronous progress and a host of other features

WHEN:    Wed, August 21

SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:

* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)

* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.

* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients

* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort

* only one transport (i.e., component) can be "active"


The revised OOB resolves these problems:

* async progress is used for all application processes, with the progress thread blocking in the event library

* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")

* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.

* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.

* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object

* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions

* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel

* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport

* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active

* all blocking send/recv APIs have been removed. Everything operates asynchronously.


KNOWN LIMITATIONS:

* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline

* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker

* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways

* obviously, not every error path has been tested nor necessarily covered

* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.

* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways

* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC

This commit was SVN r29058.
2013-08-22 16:37:40 +00:00
Ralph Castain
9b59d8de6f This is actually a much smaller commit than it appears at first glance - it just touches a lot of files. The --without-rte-support configuration option has never really been implemented completely. The option caused various objects not to be defined and conditionally compiled some base functions, but did nothing to prevent build of the component libraries. Unfortunately, since many of those components use objects covered by the option, it caused builds to break if those components were allowed to build.
Brian dealt with this in the past by creating platform files and using "no-build" to block the components. This was clunky, but acceptable when only one organization was using that option. However, that number has now expanded to at least two more locations.

Accordingly, make --without-rte-support actually work by adding appropriate configury to prevent components from building when they shouldn't. While doing so, remove two frameworks (db and rmcast) that are no longer used as ORCM comes to a close (besides, they belonged in ORCM now anyway). Do some minor cleanups along the way.

This commit was SVN r25497.
2011-11-22 21:24:35 +00:00
Abhishek Kulkarni
afbe3e99c6 * Wrap all the direct error-code checks of the form (OMPI_ERR_* == ret) with
(OMPI_ERR_* = OPAL_SOS_GET_ERR_CODE(ret)), since the return value could be a
 SOS-encoded error. The OPAL_SOS_GET_ERR_CODE() takes in a SOS error and returns
 back the native error code.

* Since OPAL_SUCCESS is preserved by SOS, also change all calls of the form
  (OPAL_ERROR == ret) to (OPAL_SUCCESS != ret). We thus avoid having to
  decode 'ret' to get the native error code.

This commit was SVN r23162.
2010-05-17 23:08:56 +00:00
Rainer Keller
221fb9dbca ... Delayed due to notifier commits earlier this day ...
- Delete unnecessary header files using
   contrib/check_unnecessary_headers.sh after applying
   patches, that include headers, being "lost" due to
   inclusion in one of the now deleted headers...

   In total 817 files are touched.
   In ompi/mpi/c/ header files are moved up into the actual c-file,
   where necessary (these are the only additional #include),
   otherwise it is only deletions of #include (apart from the above
   additions required due to notifier...)

 - To get different MCAs (OpenIB, TM, ALPS), an earlier version was
   successfully compiled (yesterday) on:
   Linux locally using intel-11, gcc-4.3.2 and gcc-SVN + warnings enabled
   Smoky cluster (x86-64 running Linux) using PGI-8.0.2 + warnings enabled
   Lens cluster (x86-64 running Linux) using Pathscale-3.2 + warnings enabled

This commit was SVN r21096.
2009-04-29 01:32:14 +00:00
Rainer Keller
4c0e8e1e69 - Header orte/mca/oob/base/base.h is probably the wrong one to include
anyhow -- if oob functionality is neededm then orte/mca/oob/oob.h

   Nevertheless compiles fine with -Wimplicit-function-declaration   

This commit was SVN r20641.
2009-02-26 04:20:03 +00:00
Ralph Castain
15c47a2473 Revise the daemon collective system to handle comm_spawn patterns that cross into new nodes that are not direct children on the routing tree of the HNP.
Refers to ticket #1548. Although this appears to fix the problem, the ticket will be held open pending further test prior to transition to the 1.3 branch.

This commit was SVN r19674.
2008-10-02 20:08:27 +00:00
Brian Barrett
39a6057fc6 A number of improvements / changes to the RML/OOB layers:
* General TCP cleanup for OPAL / ORTE
  * Simplifying the OOB by moving much of the logic into the RML
  * Allowing the OOB RML component to do routing of messages
  * Adding a component framework for handling routing tables
  * Moving the xcast functionality from the OOB base to its own framework

Includes merge from tmp/bwb-oob-rml-merge revisions:

    r15506, r15507, r15508, r15510, r15511, r15512, r15513

This commit was SVN r15528.

The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
  r15506
  r15507
  r15508
  r15510
  r15511
  r15512
  r15513
2007-07-20 01:34:02 +00:00