1
1

12 Коммитов

Автор SHA1 Сообщение Дата
Ralph Castain
d565a76814 Do some cleanup of the way we handle modex data. Identify data that needs to be shared with peers in my job vs data that needs to be shared with non-peers - no point in sharing extra data. When we share data with some process(es) from another job, we cannot know in advance what info they have or lack, so we have to share everything just in case. This limits the optimization we can do for things like comm_spawn.
Create a new required key in the OMPI layer for retrieving a "node id" from the database. ALL RTE'S MUST DEFINE THIS KEY. This allows us to compute locality in the MPI layer, which is necessary when we do things like intercomm_create.

cmr:v1.7.4:reviewer=rhc:subject=Cleanup handling of modex data

This commit was SVN r29274.
2013-09-27 00:37:49 +00:00
Ralph Castain
a200e4f865 As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***

Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.

***************************************************************************************

I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.

The code is in  https://bitbucket.org/rhc/ompi-oob2


WHAT:    Rewrite of ORTE OOB

WHY:       Support asynchronous progress and a host of other features

WHEN:    Wed, August 21

SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:

* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)

* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.

* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients

* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort

* only one transport (i.e., component) can be "active"


The revised OOB resolves these problems:

* async progress is used for all application processes, with the progress thread blocking in the event library

* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")

* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.

* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.

* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object

* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions

* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel

* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport

* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active

* all blocking send/recv APIs have been removed. Everything operates asynchronously.


KNOWN LIMITATIONS:

* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline

* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker

* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways

* obviously, not every error path has been tested nor necessarily covered

* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.

* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways

* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC

This commit was SVN r29058.
2013-08-22 16:37:40 +00:00
Nathan Hjelm
88cadc552d Make opal/db/pmi use as few PMI keys as possible.
This commit reintroduces key compression into the pmi db. This feature
compresses the keys stored into the component into a small number of
PMI keys by serializing the data and base64 encoding the result. This
will avoid issues with Cray PMI which restricts us to ~ 3 PMI keys per
rank.

This commit was SVN r28993.
2013-08-03 01:06:59 +00:00
Ralph Castain
6c1a140e99 Per request from Nathan, add a "commit" API to the opal db framework. This allows him to aggregate keys to work around the Cray's severe PMI limitations
This commit was SVN r28917.
2013-07-22 22:57:16 +00:00
Ralph Castain
45af6cf59e The move of the orte_db framework to opal required that we create an opaque opal_identifier_t type as OPAL cannot know anything about the ORTE process name. However, passing a value down to opal and then having the db components reference it causes alignment issues on Solaris Sparc platforms. So pass the pointer instead and do the old "memcpy" trick to avoid the problem.
This commit was SVN r28308.
2013-04-08 23:34:16 +00:00
Ralph Castain
4dbc468c3c Remove stale file
This commit was SVN r28299.
2013-04-07 13:52:48 +00:00
Ralph Castain
c121a784ae Remove some weird code around opal_db_close and cleanup that framework's open/close operation
This commit was SVN r28298.
2013-04-07 13:52:28 +00:00
Ralph Castain
10257b8b43 Add missing include
This commit was SVN r28297.
2013-04-07 01:32:08 +00:00
Ralph Castain
1067b1f5ee Add a little debug
This commit was SVN r28295.
2013-04-06 15:24:35 +00:00
Nathan Hjelm
365cf48db5 Update OPAL frameworks to use the MCA framework system.
This commit was SVN r28239.
2013-03-27 21:11:47 +00:00
Ralph Castain
8b8333da3e Add missing include
This commit was SVN r28114.
2013-02-26 19:56:05 +00:00
Ralph Castain
bd9265c560 Per the meeting on moving the BTLs to OPAL, move the ORTE database "db" framework to OPAL so the relocated BTLs can access it. Because the data is indexed by process, this requires that we define a new "opal_identifier_t" that corresponds to the orte_process_name_t struct. In order to support multiple run-times, this is defined in opal/mca/db/db_types.h as a uint64_t without identifying the meaning of any part of that data.
A few changes were required to support this move:

1. the PMI component used to identify rte-related data (e.g., host name, bind level) and package them as a unit to reduce the number of PMI keys. This code was moved up to the ORTE layer as the OPAL layer has no understanding of these concepts. In addition, the component locally stored data based on process jobid/vpid - this could no longer be supported (see below for the solution).

2. the hash component was updated to use the new opal_identifier_t instead of orte_process_name_t as its index for storing data in the hash tables. Previously, we did a hash on the vpid and stored the data in a 32-bit hash table. In the revised system, we don't see a separate "vpid" field - we only have a 64-bit opaque value. The orte_process_name_t hash turned out to do nothing useful, so we now store the data in a 64-bit hash table. Preliminary tests didn't show any identifiable change in behavior or performance, but we'll have to see if a move back to the 32-bit table is required at some later time.

3. the db framework was a "select one" system. However, since the PMI component could no longer use its internal storage system, the framework has now been changed to a "select many" mode of operation. This allows the hash component to handle all internal storage, while the PMI component only handles pushing/pulling things from the PMI system. This was something we had planned for some time - when fetching data, we first check internal storage to see if we already have it, and then automatically go to the global system to look for it if we don't. Accordingly, the framework was provided with a custom query function used during "select" that lets you seperately specify the "store" and "fetch" ordering.

4. the ORTE grpcomm and ess/pmi components, and the nidmap code,  were updated to work with the new db framework and to specify internal/global storage options.

No changes were made to the MPI layer, except for modifying the ORTE component of the OMPI/rte framework to support the new db framework.

This commit was SVN r28112.
2013-02-26 17:50:04 +00:00