WHAT: Merge the PMIx branch into the devel repo, creating a new
OPAL “lmix” framework to abstract PMI support for all RTEs.
Replace the ORTE daemon-level collectives with a new PMIx
server and update the ORTE grpcomm framework to support
server-to-server collectives
WHY: We’ve had problems dealing with variations in PMI implementations,
and need to extend the existing PMI definitions to meet exascale
requirements.
WHEN: Mon, Aug 25
WHERE: https://github.com/rhc54/ompi-svn-mirror.git
Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding.
All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level.
Accordingly, we have:
* created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations.
* Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported.
* Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint
* removed the prior OMPI/OPAL modex code
* added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform.
* retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand
This commit was SVN r32570.
This won't transition cleanly to the 1.8 series, and may represent too much change, so we'll have to (a) evaluate whether or not to bring it over (once it demonstrates that it does indeed solve the problem), and (b) develop a custom patch for that purpose.
Refs trac:4717
This commit was SVN r32063.
The following Trac tickets were found above:
Ticket 4717 --> https://svn.open-mpi.org/trac/ompi/ticket/4717
http://www.open-mpi.org/community/lists/devel/2014/05/14822.php
Revamp the ORTE global data structures to reduce memory footprint and add new features. Add ability to control/set cpu frequency, though this can only be done if the sys admin has setup the system to support it (or you run as root).
This commit was SVN r31916.
If we are aborting, then set the flags so the HNP directly sends an exit command to each daemon. Make it the halt_vm command so the remote daemon doesn't try to relay it, but instead just exits without waiting for its routed children to exit first.
cmr=v1.8.1:reviewer=jsquyres:subject=fix hangs due to abort prior to daemon wireup
This commit was SVN r31304.
Change the priority of comm_failure and job_termination events to ensure we process final messages prior to terminating. Check for termination conditions when processing proc termination events as we may order proc termination when the daemon gets an exit command, but we can't see the proc actually terminate until we get out of that message event.
Jeff: probably easiest to review this by testing. I tested it under both Slurm and rsh on v1.7.5 as well as trunk
cmr=v1.7.5:reviewer=jsquyres:subject=resolve event priorities during VM shutdown
This commit was SVN r31042.
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
Features:
- Support for an override parameter file (openmpi-mca-param-override.conf).
Variable values in this file can not be overridden by any file or environment
value.
- Support for boolean, unsigned, and unsigned long long variables.
- Support for true/false values.
- Support for enumerations on integer variables.
- Support for MPIT scope, verbosity, and binding.
- Support for command line source.
- Support for setting variable source via the environment using
OMPI_MCA_SOURCE_<var name>=source (either command or file:filename)
- Cleaner API.
- Support for variable groups (equivalent to MPIT categories).
Notes:
- Variables must be created with a backing store (char **, int *, or bool *)
that must live at least as long as the variable.
- Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of
mca_base_var_set_value() to change the value.
- String values are duplicated when the variable is registered. It is up to
the caller to free the original value if necessary. The new value will be
freed by the mca_base_var system and must not be freed by the user.
- Variables with constant scope may not be settable.
- Variable groups (and all associated variables) are deregistered when the
component is closed or the component repository item is freed. This
prevents a segmentation fault from accessing a variable after its component
is unloaded.
- After some discussion we decided we should remove the automatic registration
of component priority variables. Few component actually made use of this
feature.
- The enumerator interface was updated to be general enough to handle
future uses of the interface.
- The code to generate ompi_info output has been moved into the MCA variable
system. See mca_base_var_dump().
opal: update core and components to mca_base_var system
orte: update core and components to mca_base_var system
ompi: update core and components to mca_base_var system
This commit also modifies the rmaps framework. The following variables were
moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode,
rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables.
This commit was SVN r28236.
Update all the orte ess components to remove their associated APIs for retrieving proc data. Update the grpcomm API to reflect transfer of set/get modex info to the db framework.
Note that this doesn't recreate the old GPR. This is strictly a local db storage that may (at some point) obtain any missing data from the local daemon as part of an async methodology. The framework allows us to experiment with such methods without perturbing the default one.
This commit was SVN r26678.
Roll in the ORTE state machine. Remove last traces of opal_sos. Remove UTK epoch code.
Please see the various emails about the state machine change for details. I'll send something out later with more info on the new arch.
This commit was SVN r26242.
Brian dealt with this in the past by creating platform files and using "no-build" to block the components. This was clunky, but acceptable when only one organization was using that option. However, that number has now expanded to at least two more locations.
Accordingly, make --without-rte-support actually work by adding appropriate configury to prevent components from building when they shouldn't. While doing so, remove two frameworks (db and rmcast) that are no longer used as ORCM comes to a close (besides, they belonged in ORCM now anyway). Do some minor cleanups along the way.
This commit was SVN r25497.
If the errmgr is going to try and hold the orted until all routes and children are gone, then the exit cmd must do the same. Otherwise, the orted exits immediately without waiting for routes to be dismantled, which is why we don't see the connections close.
Also cleanup some diagnostics and add some debug to more clearly see what's going on.
This commit was SVN r25321.
termination condition is to be checked at the daemon/HNP level not down
in the routing.
This commit was SVN r25313.
The following SVN revision numbers were found above:
r25248 --> open-mpi/ompi@b42ccc89b8
Fix a termination issue that caused procs local to mpirun to not be killed if they weren't calling into the library. Thanks to Terry Dontje for spending countless hours chasing his tail on this one! :-(
This commit was SVN r25285.
To enable the epochs and the resilient orte code, use the configure flag:
--enable-resilient-orte
This will define both:
ORTE_ENABLE_EPOCH
ORTE_RESIL_ORTE
This commit was SVN r25093.
Everyone will be starting at MIN anyway (until we implement restart of course)
so there's no reason to set the epoch to INVALID and then immediately reset them
to MIN. This way there's less room to make mistakes later.
This commit was SVN r24829.
This is a fairly intrusive change, but outside of the moving of opal/event to opal/mca/event, the only changes involved (a) changing all calls to opal_event functions to reflect the new framework instead, and (b) ensuring that all opal_event_t objects are properly constructed since they are now true opal_objects.
Note: Shiqing has just returned from vacation and has not yet had a chance to complete the Windows integration. Thus, this commit almost certainly breaks Windows support on the trunk. However, I want this to have a chance to soak for as long as possible before I become less available a week from today (going to be at a class for 5 days, and thus will only be sparingly available) so we can find and fix any problems.
Biggest change is moving the libevent code from opal/event to a new opal/mca/event framework. This was done to make it much easier to update libevent in the future. New versions can be inserted as a new component and tested in parallel with the current version until validated, then we can remove the earlier version if we so choose. This is a statically built framework ala installdirs, so only one component will build at a time. There is no selection logic - the sole compiled component simply loads its function pointers into the opal_event struct.
I have gone thru the code base and converted all the libevent calls I could find. However, I cannot compile nor test every environment. It is therefore quite likely that errors remain in the system. Please keep an eye open for two things:
1. compile-time errors: these will be obvious as calls to the old functions (e.g., opal_evtimer_new) must be replaced by the new framework APIs (e.g., opal_event.evtimer_new)
2. run-time errors: these will likely show up as segfaults due to missing constructors on opal_event_t objects. It appears that it became a typical practice for people to "init" an opal_event_t by simply using memset to zero it out. This will no longer work - you must either OBJ_NEW or OBJ_CONSTRUCT an opal_event_t. I tried to catch these cases, but may have missed some. Believe me, you'll know when you hit it.
There is also the issue of the new libevent "no recursion" behavior. As I described on a recent email, we will have to discuss this and figure out what, if anything, we need to do.
This commit was SVN r23925.
The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang.
This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is:
* pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place
* modified the errmgr to directly call the new routines when termination is detected
* removed the grpcomm.onesided_barrier and its associated RML tag
* add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree
* use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero
Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial.
This commit was SVN r23429.
(OMPI_ERR_* = OPAL_SOS_GET_ERR_CODE(ret)), since the return value could be a
SOS-encoded error. The OPAL_SOS_GET_ERR_CODE() takes in a SOS error and returns
back the native error code.
* Since OPAL_SUCCESS is preserved by SOS, also change all calls of the form
(OPAL_ERROR == ret) to (OPAL_SUCCESS != ret). We thus avoid having to
decode 'ret' to get the native error code.
This commit was SVN r23162.
Note that this isn't a problem since MPI_Abort and orte_abort are only called under controlled circumstances - i.e., we are doing an orderly abort and not segfaulting. If we can't get the message out for some reason, then too bad - we'll still see an abnormal process termination and act accordingly.
This commit was SVN r23045.
* add hnp and orted modules to the errmgr framework. The HNP module contains much of the code that was in the errmgr base since that code could only be executed by the HNP anyway.
* update the odls to report process states directly into the active errmgr module, thus removing the need to send messages looped back into the odls cmd processor. Let the active errmgr module decide what to do at various states.
* remove the code to track application state progress from the plm_base_launch_support.c code. Update the plm modules to call the errmgr directly when a launch fails.
* update the plm_base_receive.c code to call the errmgr with state updates from remote daemons
* update the routed modules to reflect that process state is updated in the errmgr
* ensure that the orted's open the errmgr and select their appropriate module
* add new pretty-print utilities to print process and job state. Move the pretty-print of time info to a globally-accessible place
* define a global orte_comm function to send messages from orted's to the HNP so that others can overlay the standard RML methods, if desired.
* update the orterun help output to reflect that the "term w/o sync" error message can result from three, not two, scenarios
This commit was SVN r23023.
Cleanup the kill_procs command by removing a no-longer-used param. We update the process state when the proc actually exits.
This commit was SVN r22783.
Modify the orte configure options to specify --enable-multicast such that it directs components to build or not instead of littering the code base with #if's. Remove those #if's where they used to occur.
Add a new grpcomm "mcast" module to support multicast operations. Still some work required to properly perform daemon collectives for comm_spawn operations. New module only builds when --enable-multicast is provided, and when specifically selected.
This commit was SVN r22709.
Have orte call setpgrp after forking (but before exec) when
orte_forward_job_control is set. Then have it send signals to the
child's process group. This allows suspending jobs that fork.
If a SIGTSTP arrives before the processes have been launched, then
record it and suspend them right after launching.
This commit was SVN r22557.