to a pending queue of eager rdma QP instead of correct pending list. This patch
fixes this by getting reed of "eager rdma qp" notion. Packet is always send
over its order QP. The patch also adds two pending queues for high and low prio
packets. Only high prio packets are sent over eager RDMA channel.
This commit was SVN r16780.
main idea (except of cleanup) is to save on initialisation of unneeded fields
and to use C type checking system to catch obvious errors.
This commit was SVN r16779.
Each one of them has a field to store QP type, but this is redundant.
Store qp type only in one structure (the component one).
This commit was SVN r16272.
one HCA. Multiple ports, LMC, multiple BTLs per one LID. Having only one CQ for
all of them substantially reduce polling time.
This commit was SVN r15933.
/tmp/jms-modular-wireup branch):
* This commit moves all the openib BTL connection code out of
btl_openib_endpoint.c and into a connect "pseudo-component" area,
meaning that different schemes for doing OFA connection schemes can
be chosen via function pointer (i.e., MCA parameter) at run-time.
* The connect/connect.h file includes comments describing the
specific interface for the connect pseudo-component.
* Two pseudo-components are in this commit (more can certainly be
added).
* oob: use the same old oob/rml scheme for creating OFA connections
that we've had forever; this now just puts the logic into this
self-contained pseudo-component.
* rdma_cm: a currently-empty set of functions (that currently
return NOT_IMPLEMENTED) that will someday use the RDMA connection
manager to make OFA connections.
This commit was SVN r15786.
sender piggybacks a number of credit messages it received from a peer. A number
of outstanding credit messages is limited. This is needed to never ever fall
back to HW flow control.
This commit was SVN r15580.
1. Galen's fine-grain control of queue pair resources in the openib
BTL.
1. Pasha's new implementation of asychronous HCA event handling.
Pasha's new implementation doesn't take much explanation, but the new
"multifrag" stuff does.
Note that "svn merge" was not used to bring this new code from the
/tmp/ib_multifrag branch -- something Bad happened in the periodic
trunk pulls on that branch making an actual merge back to the trunk
effectively impossible (i.e., lots and lots of arbitrary conflicts and
artifical changes). :-(
== Fine-grain control of queue pair resources ==
Galen's fine-grain control of queue pair resources to the OpenIB BTL
(thanks to Gleb for fixing broken code and providing additional
functionality, Pasha for finding broken code, and Jeff for doing all
the svn work and regression testing).
Prior to this commit, the OpenIB BTL created two queue pairs: one for
eager size fragments and one for max send size fragments. When the
use of the shared receive queue (SRQ) was specified (via "-mca
btl_openib_use_srq 1"), these QPs would use a shared receive queue for
receive buffers instead of the default per-peer (PP) receive queues
and buffers. One consequence of this design is that receive buffer
utilization (the size of the data received as a percentage of the
receive buffer used for the data) was quite poor for a number of
applications.
The new design allows multiple QPs to be specified at runtime. Each
QP can be setup to use PP or SRQ receive buffers as well as giving
fine-grained control over receive buffer size, number of receive
buffers to post, when to replenish the receive queue (low water mark)
and for SRQ QPs, the number of outstanding sends can also be
specified. The following is an example of the syntax to describe QPs
to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues:
{{{
-mca btl_openib_receive_queues \
"P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32"
}}}
Each QP description is delimited by ";" (semicolon) with individual
fields of the QP description delimited by "," (comma). The above
example therefore describes 4 QPs.
The first QP is:
P,128,16,4
Meaning: per-peer receive buffer QPs are indicated by a starting field
of "P"; the first QP (shown above) is therefore a per-peer based QP.
The second field indicates the size of the receive buffer in bytes
(128 bytes). The third field indicates the number of receive buffers
to allocate to the QP (16). The fourth field indicates the low
watermark for receive buffers at which time the BTL will repost
receive buffers to the QP (4).
The second QP is:
S,1024,256,128,32
Shared receive queue based QPs are indicated by a starting field of
"S"; the second QP (shown above) is therefore a shared receive queue
based QP. The second, third and fourth fields are the same as in the
per-peer based QP. The fifth field is the number of outstanding sends
that are allowed at a given time on the QP (32). This provides a
"good enough" mechanism of flow control for some regular communication
patterns.
QPs MUST be specified in ascending receive buffer size order. This
requirement may be removed prior to 1.3 release.
This commit was SVN r15474.
This is required to tighten up the BTL semantics. Ordering is not guaranteed,
but, if the BTL returns a order tag in a descriptor (other than
MCA_BTL_NO_ORDER) then we may request another descriptor that will obey
ordering w.r.t. to the other descriptor.
This will allow sane behavior for RDMA networks, where local completion of an
RDMA operation on the active side does not imply remote completion on the
passive side. If we send a FIN message after local completion and the FIN is
not ordered w.r.t. the RDMA operation then badness may occur as the passive
side may now try to deregister the memory and the RDMA operation may still be
pending on the passive side.
Note that this has no impact on networks that don't suffer from this
limitation as the ORDER tag can simply always be specified as
MCA_BTL_NO_ORDER.
This commit was SVN r14768.
allocated from mpool memory (which is registered memory for RDMA transports)
This is not a problem for a small jobs, but for a big number of ranks an
amount of waisted memory is big.
This commit was SVN r13921.
we are looking at subnet_id's and we are counting active ports per subnet.
move subnet count out of procs loop,, no need to do it there...
This commit was SVN r13105.
George wrote the initial patch, I extended it slightly and am responsible for all bugs found.
Refs trac:587
This commit was SVN r13023.
The following Trac tickets were found above:
Ticket 587 --> https://svn.open-mpi.org/trac/ompi/ticket/587
This is somewhat limited currently for expample, if you have 3 ports on Node A and 5 ports
on Node B then the peers will use 3 ports to communicate with each other.
This is on a subnet basis, so for any pair of nodes we take the
intersection of the available ports within a subnet.
We use subnets to determine reachability for lazy connection establishment. So
if Node A and Node B each have two HCA's (on seperate networks) then the
subnet's must be distinct, otherwise we will try to wire up HCA's on seperate
networks.
This commit was SVN r12978.
* Make sure that the pval always writes to the correct portion of the
lval. This only matters on 32 bit big endian machines.
* On 32 bit machines when assigning to pval, the other 4 bytes of lval
weren't being written, which could lead to bogus data
We use macros so that there aren't casts all over the code and the pval
assignment can occur to the correct 4 bytes. Refs trac:587
This commit was SVN r12974.
The following Trac tickets were found above:
Ticket 587 --> https://svn.open-mpi.org/trac/ompi/ticket/587
udapl/openib/vapi/gm mpools a deprecated. rdma mpool has parameter that allows
to limit its size mpool_rdma_rcache_size_limit (default is 0 - unlimited).
This commit was SVN r12878.
the same time, remove some of the MPI-related options from OPAL:
- provide mechanism to change at runtime whether sched_yield() should
be called when the progress engine is idle
- provide mechanism for changing the rate at which the event engine
is called when there are "no" users of the event engine (ie, when
using MPI but not TCP)
- fix some function names in the progress engine to better match
their intended use (and remove MPI naming scheme)
- remove progress_mpi_enable / progress_mpi_disable because
we can now use the functions to set the sched_yield and
tick rate interfaces
- rename opal_progress_events() to opal_progress_set_event_flag()
because the first really isn't descriptive of what the function
does and I always got confused by it
This commit was SVN r12645.
Accordingly, there are new APIs to the name service to support the ability to get a job's parent, root, immediate children, and all its descendants. In addition, the terminate_job, terminate_orted, and signal_job APIs for the PLS have been modified to accept attributes that define the extent of their actions. For example, doing a "terminate_job" with an attribute of ORTE_NS_INCLUDE_DESCENDANTS will terminate the given jobid AND all jobs that descended from it.
I have tested this capability on a MacBook under rsh, Odin under SLURM, and LANL's Flash (bproc). It worked successfully on non-MPI jobs (both simple and including a spawn), and MPI jobs (again, both simple and with a spawn).
This commit was SVN r12597.
The fix is to set opcode to SEND at the entrance to the send function before
checking credits and putting fragment to the pending list. We do the same thing
in put/get functions i.e setting opcode at the entrance to the function.
This commit was SVN r12559.