See bug report
https://github.com/open-mpi/ompi/issues/3548
If a 1sided test is launched -host hostA:2,hostB:1 some of the ranks
call allocate_state_single() and others call allocate_state_shared().
These functions were producing different values for module->state_size
but that's used when they lookup peer info from each other in
ompi_osc_rdma_peer_setup() so they need to all have matching
module->state_offset values.
This change adds a few unused bytes in the memory allocate_state_single()
creates so it matches.
Signed-off-by: Mark Allen <markalle@us.ibm.com>
Finally Merging this in. MPI_*_get_info/set_info().
Targeting v3.1 release. @hjelmn were you interested in switching some internal pieces to begin using this? Should we target v3.1 (or whatever we call the Oct 15th release?)
The expected sequence of events for processing info during object creation
is that if there's an incoming info arg, it is opal_info_dup()ed into the obj
at obj->s_info first. Then interested components register callbacks for
keys they want to know about using opal_infosubscribe_infosubscribe().
Inside info_subscribe_subscribe() the specified callback() is called with
whatever matching k/v is in the object's info, or with the default. The
return string from the callback goes into the new k/v stored in info, and
the input k/v is saved as __IN_<key>/<val>. It's saved the same way
whether the input came from info or whether it was a default. A null return
from the callback indicates an ignored key/val, and no k/v is stored for
it, but an __IN_<key>/<val> is still kept so we still have access to the
original.
At MPI_*_set_info() time, opal_infosubscribe_change_info() is used. That
function calls the registered callbacks for each item in the provided info.
If the callback returns non-null, the info is updated with that k/v, or if
the callback returns null, that key is deleted from info. An __IN_<key>/<val>
is saved either way, and overwrites any previously saved value.
When MPI_*_get_info() is called, opal_info_dup_mpistandard() is used, which
allows relatively easy changes in interpretation of the standard, by looking
at both the <key>/<val> and __IN_<key>/<val> in info. Right now it does
1. includes system extras, eg k/v defaults not expliclty set by the user
2. omits ignored keys
3. shows input values, not callback modifications, eg not the internal values
Currently the callbacks are doing things like
return some_condition ? "true" : "false"
that is, returning static strings that are not to be freed. If the return
strings start becoming more dynamic in the future I don't see how unallocated
strings could support that, so I'd propose a change for the future that
the callback()s registered with info_subscribe_subscribe() do a strdup on
their return, and we change the callers of callback() to free the strings
it returns (there are only two callers).
Rough outline of the smaller changes spread over the less central files:
comm.c
initialize comm->super.s_info to NULL
copy into comm->super.s_info in comm creation calls that provide info
OBJ_RELEASE comm->super.s_info at free time
comm_init.c
initialize comm->super.s_info to NULL
file.c
copy into file->super.s_info if file creation provides info
OBJ_RELEASE file->super.s_info at free time
win.c
copy into win->super.s_info if win creation provides info
OBJ_RELEASE win->super.s_info at free time
comm_get_info.c
file_get_info.c
win_get_info.c
change_info() if there's no info attached (shouldn't happen if callbacks
are registered)
copy the info for the user
The other category of change is generally addressing compiler warnings where
ompi_info_t and opal_info_t were being used a little too interchangably. An
ompi_info_t* contains an opal_info_t*, at &(ompi_info->super)
Also this commit updates the copyrights.
Signed-off-by: Mark Allen <markalle@us.ibm.com>
This commit fixes a race condition in the rendezvous protocol. The
race occurs because the sender does not wait for the link event on the
send buffer. Even though this has not been seen in the wild, it is
possible for the receiver to issue the PtlGet() before the ME is
linked which causes a NAK at the receiver. This commit resolves this
race by reissuing the PtlGet() when a NAK occurs.
Signed-off-by: Todd Kordenbrock <thkgcode@gmail.com>
ompi_communicator_t, ompi_win_t, ompi_file_t all have a super class of type opal_infosubscriber_t instead of a base/super type of opal_object_t (in previous code comm used c_base, but file used super). It may be a bit bold to say that being a subscriber of MPI_Info is the foundational piece that ties these three things together, but if you object, then I would prefer to turn infosubscriber into a more general name that encompasses other common features rather than create a different super class. The key here is that we want to be able to pass comm, win and file objects as if they were opal_infosubscriber_t, so that one routine can heandle all 3 types of objects being passed to it.
MPI_INFO_NULL is still an ompi_predefined_info_t type since an MPI_Info is part of ompi but the internal details of the underlying information concept is part of opal.
An ompi_info_t type still exists for exposure to the user, but it is simply a wrapper for the opal object.
Routines such as ompi_info_dup, etc have all been moved to opal_info_dup and related to the opal directory.
Fortran to C translation tables are only used for MPI_Info that is exposed to the application and are therefore part of the ompi_info_t and not the opal_info_t
The data structure changes are primarily in the following files:
communicator/communicator.h
ompi/info/info.h
ompi/win/win.h
ompi/file/file.h
The following new files were created:
opal/util/info.h
opal/util/info.c
opal/util/info_subscriber.h
opal/util/info_subscriber.c
This infosubscriber concept is that communicators, files and windows can have subscribers that subscribe to any changes in the info associated with the comm/file/window. When xxx_set_info is called, the new info is presented to each subscriber who can modify the info in any way they want. The new value is presented to the next subscriber and so on until all subscribers have had a chance to modify the value. Therefore, the order of subscribers can make a difference but we hope that there is generally only one subscriber that cares or modifies any given key/value pair. The final info is then stored and returned by a call to xxx_get_info.
The new model can be seen in the following files:
ompi/mpi/c/comm_get_info.c
ompi/mpi/c/comm_set_info.c
ompi/mpi/c/file_get_info.c
ompi/mpi/c/file_set_info.c
ompi/mpi/c/win_get_info.c
ompi/mpi/c/win_set_info.c
The current subscribers where changed as follows:
mca/io/ompio/io_ompio_file_open.c
mca/io/ompio/io_ompio_module.c
mca/osc/rmda/osc_rdma_component.c (This one actually subscribes to "no_locks")
mca/osc/sm/osc_sm_component.c (This one actually subscribes to "blocking_fence" and "alloc_shared_contig")
Signed-off-by: Mark Allen <markalle@us.ibm.com>
Conflicts:
AUTHORS
ompi/communicator/comm.c
ompi/debuggers/ompi_mpihandles_dll.c
ompi/file/file.c
ompi/file/file.h
ompi/info/info.c
ompi/mca/io/ompio/io_ompio.h
ompi/mca/io/ompio/io_ompio_file_open.c
ompi/mca/io/ompio/io_ompio_file_set_view.c
ompi/mca/osc/pt2pt/osc_pt2pt.h
ompi/mca/sharedfp/addproc/sharedfp_addproc.h
ompi/mca/sharedfp/addproc/sharedfp_addproc_file_open.c
ompi/mca/topo/treematch/topo_treematch_dist_graph_create.c
ompi/mpi/c/lookup_name.c
ompi/mpi/c/publish_name.c
ompi/mpi/c/unpublish_name.c
opal/mca/mpool/base/mpool_base_alloc.c
opal/util/Makefile.am
OMPI send and receive mesages use size_t for the lenght while PSM and PSM2
psm(2)mq_send/receive use uint32_t. Type size_t is 64 bits in 64 bits arch.
Therefore, this patch adds a sanity check on the lenght of the message
and fails gracefully.
Signed-off-by: Matias Cabral <matias.a.cabral@intel.com>
* Don't overflow the internal datatype count.
Change the type of the count to be a size_t (it does not alter the total
size of the internal structures, so has no impact on the ABI).
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
* Optimize the datatype creation.
The internal array of counts of predefined types is now only created
when needed, which is either in a heterogeneous environment, or when
one call get_elements. It saves space and makes the convertor creation a
little faster in some cases.
Rearrange the fields in the datatype description structs.
The macro OPAL_DATATYPE_INIT_PTYPES_ARRAY had a bug, and the
static array was only partially created. All predefined types should
have the ptypes array created and initialized.
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
* Fix the boundary computation.
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
* test/datatype: add test for short unpack on heteregeneous cluster
Signed-off-by: Gilles Gouaillardet <gilles@rist.or.jp>
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
* Trying to reduce the cost of creating a convertor.
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
* Respect the unpack boundaries.
As Gilles suggested on #2535 the opal_unpack_general_function was
unpacking based on the requested count and not on the amount of packed
data provided.
Fixes#2535.
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
When we updated UFS and others we left NFS alone. HDF group would like
a fix, so here we go.
Signed-off-by: Ken Raffenetti <raffenet@mcs.anl.gov>
(back-ported from upstream commit pmodels/mpich@684df9f4c9)
Signed-off-by: Gilles Gouaillardet <gilles@rist.or.jp>
`ompi_group_t::grp_proc_pointers[i]` may have sentinel values even
for processes which reside in the local node because the array for
`MPI_COMM_WORLD` is set up before `ompi_proc_complete_init`, which
allocates `ompi_proc_t` objects for processes reside in the local
node, is called in `MPI_INIT`. So using `ompi_proc_is_sentinel`
against `ompi_group_t::grp_proc_pointers[i]` in order to determine
whether the process resides in a remote node is not appropriate.
This bug sometimes causes an `MPI_ERR_RMA_SHARED` error when
`MPI_WIN_ALLOCATE_SHARED` is called, where sm OSC uses
`ompi_group_have_remote_peers`.
Signed-off-by: KAWASHIMA Takahiro <t-kawashima@jp.fujitsu.com>
We check for liblustreapi.h in OMPI_CHECK_LUSTRE, so this code was
commented out here. Might as well fully delete it, since it's
redundant and dead.
Signed-off-by: Jeff Squyres <jsquyres@cisco.com>
`ompi_group_t::grp_proc_pointers[i]` may have sentinel values even
for processes which reside in the local node because the array for
`MPI_COMM_WORLD` is set up before `ompi_proc_complete_init`, which
allocates `ompi_proc_t` objects for processes reside in the local
node, is called in `MPI_INIT`. So using `ompi_proc_is_sentinel`
against `ompi_group_t::grp_proc_pointers[i]` in order to determine
whether the process resides in a remote node is not appropriate.
This bug sometimes causes an `MPI_ERR_RMA_SHARED` error when
`MPI_WIN_ALLOCATE_SHARED` is called, where sm OSC uses
`ompi_group_have_remote_peers`.
Signed-off-by: KAWASHIMA Takahiro <t-kawashima@jp.fujitsu.com>
Fortran constants `MPI_ARGV_NULL` and `MPI_ARGVS_NULL` are defined
in MPI-3.1 p.680 as below.
> `MPI_ARGVS_NULL`
> 2-dim. array of `CHARACTER*(*)`
> `MPI_ARGV_NULL`
> array of `CHARACTER*(*)`
`MPI_ARGV_NULL` and `MPI_ARGVS_NULL` are used as an argument of
`MPI_COMM_SPAWN` and `MPI_COMM_SPAWN_MULTIPLE` respectively and
their argument `argv` and `array_of_argv` are defined as below
for `USE mpi_f08` binding in MPI-3.1.
```
CHARACTER(LEN=*), INTENT(IN) :: argv(*)
CHARACTER(LEN=*), INTENT(IN) :: array_of_argv(count, *)
```
Defining them as `INTEGER` in `mpi_f08` module will cause
a compilation error of user programs like
"There is no specific subroutine for the generic 'mpi_comm_spawn'".
Signed-off-by: KAWASHIMA Takahiro <t-kawashima@jp.fujitsu.com>
MPI_AINT_ADD and MPI_AINT_DIFF are functions and must be declared as
externals with the proper return type. This is already done properly
in the mpi and mpi_f08 modules; these declarations for these functions
were only missing from mpif.h (i.e., mpif-externals.h).
Thanks to Aboorva Devarajan (@AboorvaDevarajan) for the bug report.
Signed-off-by: Jeff Squyres <jsquyres@cisco.com>
The direct modex operation is slow, especially at scale for even modestly-connected applications. Likewise, blocking in MPI_Init while we wait for a full modex to complete takes too long. However, as George pointed out, there is a middle ground here. We could kickoff the modex operation in the background, and then trap any modex_recv's until the modex completes and the data is delivered. For most non-benchmark apps, this may prove to be the best of the available options as they are likely to perform other (non-communicating) setup operations after MPI_Init, and so there is a reasonable chance that the modex will actually be done before the first modex_recv gets called.
Once we get instant-on-enabled hardware, this won't be necessary. Clearly, zero time will always out-perform the time spent doing a modex. However, this provides a decent compromise in the interim.
This PR changes the default settings of a few relevant params to make "background modex" the default behavior:
* pmix_base_async_modex -> defaults to true
* pmix_base_collect_data -> continues to default to true (no change)
* async_mpi_init - defaults to true. Note that the prior code attempted to base the default setting of this value on the setting of pmix_base_async_modex. Unfortunately, the pmix value isn't set prior to setting async_mpi_init, and so that attempt failed to accomplish anything.
The logic in MPI_Init is:
* if async_modex AND collect_data are set, AND we have a non-blocking fence available, then we execute the background modex operation
* if async_modex is set, but collect_data is false, then we simply skip the modex entirely - no fence is performed
* if async_modex is not set, then we block until the fence completes (regardless of collecting data or not)
* if we do NOT have a non-blocking fence (e.g., we are not using PMIx), then we always perform the full blocking modex operation.
* if we do perform the background modex, and the user requested the barrier be performed at the end of MPI_Init, then we check to see if the modex has completed when we reach that point. If it has, then we execute the barrier. However, if the modex has NOT completed, then we block until the modex does complete and skip the extra barrier. So we never perform two barriers in that case.
HTH
Ralph
Signed-off-by: Ralph Castain <rhc@open-mpi.org>
Force only procs that are participating in the ne Comm to decide what
CID is appropriate. This will have 2 advantages:
* Speedup Comm creation for small communicators: non-participating procs
will not interfere
* Reduce CID fragmentation: non-overlaping groups will be allowed to use
same CID.
Signed-off-by: Artem Polyakov <artpol84@gmail.com>
This PR renames the common library for OFI libfabric from
libfabric to ofi. There are a number of reasons this
is good to do:
1) its shorter and replaces 9 characters with three for
function names for what may eventually be a fairly extensive interface
2) OFI is the term used for MTL and RML components that use
the OFI libfabric interface
3) A planned OSC component will also use the OFI term.
4) Other HPC libraries that can use OFI libfabric tend to use
the term "ofi" internally and also in their configure options
relevant to OFI libfabric (i.e. MPICH/CH4, Intel MPI, Sandia SHMEM)
There seem to be comments in places in the Open MPI source
code that indicate that this common library will be going away.
Far from it as we will want to be able to share things like
AV objects between OMPI and possibly OSHMEM components that
use the OFI libfabric interface.
This PR also adds a synonym to the --with-libfabric(-libdir)
configury options: --with-ofi and with-ofi-libdir.
Signed-off-by: Howard Pritchard <howardp@lanl.gov>
since Open MPI now requires a C99, and ptrdiff_t type is part of C99,
there is no more need for the abstract OPAL_PTRDIFF_TYPE type.
Signed-off-by: Gilles Gouaillardet <gilles@rist.or.jp>
* Complete rewrite of opal_pointer_array
Instead of a cache oblivious linear search use a bits array
to speed up the management of the free space. As a result we
slightly increase the memory used by the structure, but we get a
significant boost in performance.
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>
* Do not register datatypes in the f2c translation table.
The registration is now done up into the Fortran layer, by
forcing a call to MPI_Type_c2f.
Signed-off-by: George Bosilca <bosilca@icl.utk.edu>