This commit contains the following changes:
- bml: add a function to add a single process. this function is
intended to remove the need to maintain a opal_bitmap_t as it is
irrelevant for a single proc. BTLs will need to be updated to
either 1) ignore the return code from opal_bitmap_set_bit or not
call the function if the reachability bitmap is NULL.
- bml: add an inline accessor function for getting the bml endpoint
for a peer proc. this function will either 1) return the cached bml
endpoint, or 2) create the endpoint and call add_proc will all
available BTL modules.
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
This commit adds support for project_framework_component_* parameter
matching. This is the first step in allowing the same framework name
in multiple projects. This change also bumps the MCA component version
to 2.1.0.
All master frameworks have been updated to use the new component
versioning macro. An mca.h has been added to each project to add a
project specific versioning macro of the form
PROJECT_MCA_VERSION_2_1_0.
Signed-off-by: Nathan Hjelm <hjelmn@me.com>
WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL
All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic.
This commit was SVN r32317.
Roll in the ORTE state machine. Remove last traces of opal_sos. Remove UTK epoch code.
Please see the various emails about the state machine change for details. I'll send something out later with more info on the new arch.
This commit was SVN r26242.
(OMPI_ERR_* = OPAL_SOS_GET_ERR_CODE(ret)), since the return value could be a
SOS-encoded error. The OPAL_SOS_GET_ERR_CODE() takes in a SOS error and returns
back the native error code.
* Since OPAL_SUCCESS is preserved by SOS, also change all calls of the form
(OPAL_ERROR == ret) to (OPAL_SUCCESS != ret). We thus avoid having to
decode 'ret' to get the native error code.
This commit was SVN r23162.
OMPI
and a language agnostic part in OPAL. The convertor is completely
moved into OPAL. This offers several benefits as described in RFC
http://www.open-mpi.org/community/lists/devel/2009/07/6387.php
namely:
- Fewer basic types (int* and float* types, boolean and wchar
- Fixing naming scheme to ompi-nomenclature.
- Usability outside of the ompi-layer.
- Due to the fixed nature of simple opal types, their information is
completely
known at compile time and therefore constified
- With fewer datatypes (22), the actual sizes of bit-field types may be
reduced
from 64 to 32 bits, allowing reorganizing the opal_datatype
structure, eliminating holes and keeping data required in convertor
(upon send/recv) in one cacheline...
This has implications to the convertor-datastructure and other parts
of the code.
- Several performance tests have been run, the netpipe latency does not
change with
this patch on Linux/x86-64 on the smoky cluster.
- Extensive tests have been done to verify correctness (no new
regressions) using:
1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and
ompi-ddt:
a. running both trunk and ompi-ddt resulted in no differences
(except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run
correctly).
b. with --enable-memchecker and running under valgrind (one buglet
when run with static found in test-suite, commited)
2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt:
all passed (except for the dynamic/ tests failed!! as trunk/MTT)
3. compilation and usage of HDF5 tests on Jaguar using PGI and
PathScale compilers.
4. compilation and usage on Scicortex.
- Please note, that for the heterogeneous case, (-m32 compiled
binaries/ompi), neither
ompi-trunk, nor ompi-ddt branch would successfully launch.
This commit was SVN r21641.
OMPI_* to OPAL_*. This allows opal layer to be used more independent
from the whole of ompi.
NOTE: 9 "svn mv" operations immediately follow this commit.
This commit was SVN r21180.
- Delete unnecessary header files using
contrib/check_unnecessary_headers.sh after applying
patches, that include headers, being "lost" due to
inclusion in one of the now deleted headers...
In total 817 files are touched.
In ompi/mpi/c/ header files are moved up into the actual c-file,
where necessary (these are the only additional #include),
otherwise it is only deletions of #include (apart from the above
additions required due to notifier...)
- To get different MCAs (OpenIB, TM, ALPS), an earlier version was
successfully compiled (yesterday) on:
Linux locally using intel-11, gcc-4.3.2 and gcc-SVN + warnings enabled
Smoky cluster (x86-64 running Linux) using PGI-8.0.2 + warnings enabled
Lens cluster (x86-64 running Linux) using Pathscale-3.2 + warnings enabled
This commit was SVN r21096.
get bitten by header depending on having already included
the corresponding [opal|orte|ompi]_config.h header.
When separating, things like [OPAL|ORTE|OMPI]_DECLSPEC
are missed.
Script to add the corresponding header in front of all following
(taking care of possible #ifdef HAVE_...)
- Including some minor cleanups to
- ompi/group/group.h -- include _after_ #ifndef OMPI_GROUP_H
- ompi/mca/btl/btl.h -- nclude _after_ #ifndef MCA_BTL_H
- ompi/mca/crcp/bkmrk/crcp_bkmrk_btl.c -- still no need for
orte/util/output.h
- ompi/mca/pml/dr/pml_dr_recvreq.c -- no need for mpool.h
- ompi/mca/btl/btl.h -- reorder to fit
- ompi/mca/bml/bml.h -- reorder to fit
- ompi/runtime/ompi_mpi_finalize.c -- reorder to fit
- ompi/request/request.h -- additionally need ompi/constants.h
- Tested on linux/x86-64
This commit was SVN r20720.
opal layer.
Add a check against a maximum (actually get rid of ifs internally to
opal_bitmap.c) -- the functionality to set the current maximum size
opal_bitmap_set_max_size() is currently only used in attribute.c
to set the maximum OMPI_FORTRAN_HANDLE_MAX...
Tested on linux/x86-64 with intel-tests with all_tests_no_perf_f
run with 6 procs.
Let's look into MTT as well...
This commit was SVN r20708.
got a whole lot smaller, decreasing the memory footprint of the
running application. How much it's a good question. Here is a
breakdown:
- in mca_bml_base_endpoint_t: 3 *size_t + 1 * uint32_t
- in mca_bml_base_btl_t: 1 * int + 1 * double - 1 * float
+ 6 * size_t + 9 * (void*)
The decrease in mca_bml_base_endpoint_t is for each peer and the
decrease in mca_bml_base_btl_t is for each BTL for each peer.
So, if we consider the most convenient case where there is only
one network between all peers, this decrease the memory foot print
per peer by
9*size_t + 9*(void*) + 2 * int32_t + 1 * double - 1 * float.
On a 64 bits machine this will be 156 bytes per peer.
Now we access all these fields directly from the underlying BTL
structure, and as this structure is common to multiple BML endpoint,
we are a lot more cache friendly. Even if this do not improve the
latency, it makes the SM performance graph a lot smoother.
This commit was SVN r19659.
There was an argument that was barely used, and on return at the PML
level it contained nothing usable. It has been removed, so now we're
using less memory ...
This commit was SVN r19657.
* add "register" function to mca_base_component_t
* converted coll:basic and paffinity:linux and paffinity:solaris to
use this function
* we'll convert the rest over time (I'll file a ticket once all
this is committed)
* add 32 bytes of "reserved" space to the end of mca_base_component_t
and mca_base_component_data_2_0_0_t to make future upgrades
[slightly] easier
* new mca_base_component_t size: 196 bytes
* new mca_base_component_data_2_0_0_t size: 36 bytes
* MCA base version bumped to v2.0
* '''We now refuse to load components that are not MCA v2.0.x'''
* all MCA frameworks versions bumped to v2.0
* be a little more explicit about version numbers in the MCA base
* add big comment in mca.h about versioning philosophy
This commit was SVN r19073.
The following Trac tickets were found above:
Ticket 1392 --> https://svn.open-mpi.org/trac/ompi/ticket/1392
After much work by Jeff and myself, and quite a lot of discussion, it has become clear that we simply cannot resolve the infinite loops caused by RML-involved subsystems calling orte_output. The original rationale for the change to orte_output has also been reduced by shifting the output of XML-formatted vs human readable messages to an alternative approach.
I have globally replaced the orte_output/ORTE_OUTPUT calls in the code base, as well as the corresponding .h file name. I have test compiled and run this on the various environments within my reach, so hopefully this will prove minimally disruptive.
This commit was SVN r18619.
1. The send path get shorter. The BTL is allowed to return > 0 to specify that the
descriptor was pushed to the networks, and that the memory attached to it is
available again for the upper layer. The MCA_BTL_DES_SEND_ALWAYS_CALLBACK flag
can be used by the PML to force the BTL to always trigger the callback.
Unmodified BTL will continue to work as expected, as they will return OMPI_SUCCESS
which force the PML to have exactly the same behavior as before. Some BTLs have
been modified: self, sm, tcp, mx.
2. Add send immediate interface to BTL.
The idea is to have a mechanism of allowing the BTL to take advantage of
send optimizations such as the ability to deliver data "inline". Some
network APIs such as Portals allow data to be sent using a "thin" event
without packing data into a memory descriptor. This interface change
allows the BTL to use such capabilities and allows for other optimizations
in the future. All existing BTLs except for Portals and sm have this interface
set to NULL.
This commit was SVN r18551.
such, the commit message back to the master SVN repository is fairly
long.
= ORTE Job-Level Output Messages =
Add two new interfaces that should be used for all new code throughout
the ORTE and OMPI layers (we already make the search-and-replace on
the existing ORTE / OMPI layers):
* orte_output(): (and corresponding friends ORTE_OUTPUT,
orte_output_verbose, etc.) This function sends the output directly
to the HNP for processing as part of a job-specific output
channel. It supports all the same outputs as opal_output()
(syslog, file, stdout, stderr), but for stdout/stderr, the output
is sent to the HNP for processing and output. More on this below.
* orte_show_help(): This function is a drop-in-replacement for
opal_show_help(), with two differences in functionality:
1. the rendered text help message output is sent to the HNP for
display (rather than outputting directly into the process' stderr
stream)
1. the HNP detects duplicate help messages and does not display them
(so that you don't see the same error message N times, once from
each of your N MPI processes); instead, it counts "new" instances
of the help message and displays a message every ~5 seconds when
there are new ones ("I got X new copies of the help message...")
opal_show_help and opal_output still exist, but they only output in
the current process. The intent for the new orte_* functions is that
they can apply job-level intelligence to the output. As such, we
recommend that all new ORTE and OMPI code use the new orte_*
functions, not thei opal_* functions.
=== New code ===
For ORTE and OMPI programmers, here's what you need to do differently
in new code:
* Do not include opal/util/show_help.h or opal/util/output.h.
Instead, include orte/util/output.h (this one header file has
declarations for both the orte_output() series of functions and
orte_show_help()).
* Effectively s/opal_output/orte_output/gi throughout your code.
Note that orte_output_open() takes a slightly different argument
list (as a way to pass data to the filtering stream -- see below),
so you if explicitly call opal_output_open(), you'll need to
slightly adapt to the new signature of orte_output_open().
* Literally s/opal_show_help/orte_show_help/. The function signature
is identical.
=== Notes ===
* orte_output'ing to stream 0 will do similar to what
opal_output'ing did, so leaving a hard-coded "0" as the first
argument is safe.
* For systems that do not use ORTE's RML or the HNP, the effect of
orte_output_* and orte_show_help will be identical to their opal
counterparts (the additional information passed to
orte_output_open() will be lost!). Indeed, the orte_* functions
simply become trivial wrappers to their opal_* counterparts. Note
that we have not tested this; the code is simple but it is quite
possible that we mucked something up.
= Filter Framework =
Messages sent view the new orte_* functions described above and
messages output via the IOF on the HNP will now optionally be passed
through a new "filter" framework before being output to
stdout/stderr. The "filter" OPAL MCA framework is intended to allow
preprocessing to messages before they are sent to their final
destinations. The first component that was written in the filter
framework was to create an XML stream, segregating all the messages
into different XML tags, etc. This will allow 3rd party tools to read
the stdout/stderr from the HNP and be able to know exactly what each
text message is (e.g., a help message, another OMPI infrastructure
message, stdout from the user process, stderr from the user process,
etc.).
Filtering is not active by default. Filter components must be
specifically requested, such as:
{{{
$ mpirun --mca filter xml ...
}}}
There can only be one filter component active.
= New MCA Parameters =
The new functionality described above introduces two new MCA
parameters:
* '''orte_base_help_aggregate''': Defaults to 1 (true), meaning that
help messages will be aggregated, as described above. If set to 0,
all help messages will be displayed, even if they are duplicates
(i.e., the original behavior).
* '''orte_base_show_output_recursions''': An MCA parameter to help
debug one of the known issues, described below. It is likely that
this MCA parameter will disappear before v1.3 final.
= Known Issues =
* The XML filter component is not complete. The current output from
this component is preliminary and not real XML. A bit more work
needs to be done to configure.m4 search for an appropriate XML
library/link it in/use it at run time.
* There are possible recursion loops in the orte_output() and
orte_show_help() functions -- e.g., if RML send calls orte_output()
or orte_show_help(). We have some ideas how to fix these, but
figured that it was ok to commit before feature freeze with known
issues. The code currently contains sub-optimal workarounds so
that this will not be a problem, but it would be good to actually
solve the problem rather than have hackish workarounds before v1.3 final.
This commit was SVN r18434.
without calling a get or put. So, just keep it here until a better solution is
found.
This commit was SVN r17872.
The following SVN revision numbers were found above:
r17857 --> open-mpi/ompi@d460ccfbf9
- the registration array is now global instead of one by BTL.
- each framework have to declare the entries in the registration array reserved. Then
it have to define the internal way of sharing (or not) these entries between all
components. As an example, the PML will not share as there is only one active PML
at any moment, while the BTLs will have to. The tag is 8 bits long, the first 3
are reserved for the framework while the remaining 5 are use internally by each
framework.
- The registration function is optional. If a BTL do not provide such function,
nothing happens. However, in the case where such function is provided in the BTL
structure, it will be called by the BML, when a tag is registered.
Now, it's time for the second step... Converting OB1 from a switch based PML to an
active message one.
This commit was SVN r17140.
* bml.h had a change that introduced a variable named "_order" to
avoid a conflict with a local variable. The namespace starting
with _ belongs to the os/compiler/kernel/not us. So we can't start
symbols with _. So I replaced it with arg_order, and also updated
the threaded equivalent of the macro that was modified.
* in btl_openib_proc.c, one opal_output accidentally had its string
reverted from "ompi_modex_recv..." to
"mca_pml_base_modex_recv....". This was fixed.
* The change to ompi/runtime/ompi_preconnect.c was entirely
reverted; it was an artifact of debugging.
This commit was SVN r15475.
The following SVN revision numbers were found above:
r15474 --> open-mpi/ompi@8ace07efed
1. Galen's fine-grain control of queue pair resources in the openib
BTL.
1. Pasha's new implementation of asychronous HCA event handling.
Pasha's new implementation doesn't take much explanation, but the new
"multifrag" stuff does.
Note that "svn merge" was not used to bring this new code from the
/tmp/ib_multifrag branch -- something Bad happened in the periodic
trunk pulls on that branch making an actual merge back to the trunk
effectively impossible (i.e., lots and lots of arbitrary conflicts and
artifical changes). :-(
== Fine-grain control of queue pair resources ==
Galen's fine-grain control of queue pair resources to the OpenIB BTL
(thanks to Gleb for fixing broken code and providing additional
functionality, Pasha for finding broken code, and Jeff for doing all
the svn work and regression testing).
Prior to this commit, the OpenIB BTL created two queue pairs: one for
eager size fragments and one for max send size fragments. When the
use of the shared receive queue (SRQ) was specified (via "-mca
btl_openib_use_srq 1"), these QPs would use a shared receive queue for
receive buffers instead of the default per-peer (PP) receive queues
and buffers. One consequence of this design is that receive buffer
utilization (the size of the data received as a percentage of the
receive buffer used for the data) was quite poor for a number of
applications.
The new design allows multiple QPs to be specified at runtime. Each
QP can be setup to use PP or SRQ receive buffers as well as giving
fine-grained control over receive buffer size, number of receive
buffers to post, when to replenish the receive queue (low water mark)
and for SRQ QPs, the number of outstanding sends can also be
specified. The following is an example of the syntax to describe QPs
to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues:
{{{
-mca btl_openib_receive_queues \
"P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32"
}}}
Each QP description is delimited by ";" (semicolon) with individual
fields of the QP description delimited by "," (comma). The above
example therefore describes 4 QPs.
The first QP is:
P,128,16,4
Meaning: per-peer receive buffer QPs are indicated by a starting field
of "P"; the first QP (shown above) is therefore a per-peer based QP.
The second field indicates the size of the receive buffer in bytes
(128 bytes). The third field indicates the number of receive buffers
to allocate to the QP (16). The fourth field indicates the low
watermark for receive buffers at which time the BTL will repost
receive buffers to the QP (4).
The second QP is:
S,1024,256,128,32
Shared receive queue based QPs are indicated by a starting field of
"S"; the second QP (shown above) is therefore a shared receive queue
based QP. The second, third and fourth fields are the same as in the
per-peer based QP. The fifth field is the number of outstanding sends
that are allowed at a given time on the QP (32). This provides a
"good enough" mechanism of flow control for some regular communication
patterns.
QPs MUST be specified in ascending receive buffer size order. This
requirement may be removed prior to 1.3 release.
This commit was SVN r15474.
This is required to tighten up the BTL semantics. Ordering is not guaranteed,
but, if the BTL returns a order tag in a descriptor (other than
MCA_BTL_NO_ORDER) then we may request another descriptor that will obey
ordering w.r.t. to the other descriptor.
This will allow sane behavior for RDMA networks, where local completion of an
RDMA operation on the active side does not imply remote completion on the
passive side. If we send a FIN message after local completion and the FIN is
not ordered w.r.t. the RDMA operation then badness may occur as the passive
side may now try to deregister the memory and the RDMA operation may still be
pending on the passive side.
Note that this has no impact on networks that don't suffer from this
limitation as the ORDER tag can simply always be specified as
MCA_BTL_NO_ORDER.
This commit was SVN r14768.
We eagerly send data up to btl_*_eager_limit with the match
Upon ACK of the MATCH we start using send/receives of size
btl_*_max_send_size up to the btl_*_rdma_pipeline_offset
After the btl_*_rdma_pipeline_offset we begin using RDMA writes of
size btl_*_rdma_pipeline_frag_size.
Now, on a per message basis we only use the above protocol if the
message is larger than btl_*_min_rdma_pipeline_size
btl_*_eager_limit - > same
btl_*_max_send_size -> same
btl_*_rdma_pipeline_offset -> btl_*_min_rdma_size
btl_*_rdma_pipeline_frag_size -> btl_*_max_rdma_size
btl_*_min_rdma_pipeline_size is new..
This patch also moves all BTL common parameters initialisation into
btl_base_mca.c file.
This commit was SVN r14681.
This merge adds Checkpoint/Restart support to Open MPI. The initial
frameworks and components support a LAM/MPI-like implementation.
This commit follows the risk assessment presented to the Open MPI core
development group on Feb. 22, 2007.
This commit closes trac:158
More details to follow.
This commit was SVN r14051.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r13912
The following Trac tickets were found above:
Ticket 158 --> https://svn.open-mpi.org/trac/ompi/ticket/158
OB1 always use first element from array of BTLs available for RDMA. The patch
change the array creation algorithm, it puts different BTL in the first element
in round robin fashion.
This commit was SVN r13174.
udapl/openib/vapi/gm mpools a deprecated. rdma mpool has parameter that allows
to limit its size mpool_rdma_rcache_size_limit (default is 0 - unlimited).
This commit was SVN r12878.
all platforms. The only exceptions (and I will not deal with them
anytime soon) are on Windows:
- the write functions which require the length to be an int when it's
a size_t on all UNIX variants.
- all iovec manipulation functions where the iov_len is again an int
when it's a size_t on most of the UNIXes.
As these only happens on Windows, so I think we're set for now :)
This commit was SVN r12215.