* Resolves#3705
* Components should link against the project level library to better
support `dlopen` with `RTLD_LOCAL`.
* Extend the `mca_FRAMEWORK_COMPONENT_la_LIBADD` in the `Makefile.am`
with the appropriate project level library:
```
MCA components in ompi/
$(top_builddir)/ompi/lib@OMPI_LIBMPI_NAME@.la
MCA components in orte/
$(top_builddir)/orte/lib@ORTE_LIB_PREFIX@open-rte.la
MCA components in opal/
$(top_builddir)/opal/lib@OPAL_LIB_PREFIX@open-pal.la
MCA components in oshmem/
$(top_builddir)/oshmem/liboshmem.la"
```
Note: The changes in this commit were automated by the script in
the commit that proceeds it with the `libadd_mca_comp_update.py`
script. Some components were not included in this change because
they are statically built only.
Signed-off-by: Joshua Hursey <jhursey@us.ibm.com>
Still not completely done as we need a better way of tracking the routed module being used down in the OOB - e.g., when a peer drops connection, we want to remove that route from all conduits that (a) use the OOB and (b) are routed, but we don't want to remove it from an OFI conduit.
So we need all the routing code for dealing with cross-job communications, lifelines, etc. The HNP will be directly connected to all daemons as they must callback at startup, and so we need to track those children correctly so we know when it is okay to terminate.
We still have to support direct launch, though, as this is the only component we can use in that scenario. So if the app doesn't have daemon URI info, then it must fall back to directly connecting to everything.
WHAT: Merge the PMIx branch into the devel repo, creating a new
OPAL “lmix” framework to abstract PMI support for all RTEs.
Replace the ORTE daemon-level collectives with a new PMIx
server and update the ORTE grpcomm framework to support
server-to-server collectives
WHY: We’ve had problems dealing with variations in PMI implementations,
and need to extend the existing PMI definitions to meet exascale
requirements.
WHEN: Mon, Aug 25
WHERE: https://github.com/rhc54/ompi-svn-mirror.git
Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding.
All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level.
Accordingly, we have:
* created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations.
* Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported.
* Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint
* removed the prior OMPI/OPAL modex code
* added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform.
* retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand
This commit was SVN r32570.
pkg{data,lib,includedir}, use our own ompi{data,lib,includedir}, which is
always set to {datadir,libdir,includedir}/openmpi. This will keep us from
having help files in prefix/share/open-rte when building without Open MPI,
but in prefix/share/openmpi when building with Open MPI.
This commit was SVN r30140.
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
Features:
- Support for an override parameter file (openmpi-mca-param-override.conf).
Variable values in this file can not be overridden by any file or environment
value.
- Support for boolean, unsigned, and unsigned long long variables.
- Support for true/false values.
- Support for enumerations on integer variables.
- Support for MPIT scope, verbosity, and binding.
- Support for command line source.
- Support for setting variable source via the environment using
OMPI_MCA_SOURCE_<var name>=source (either command or file:filename)
- Cleaner API.
- Support for variable groups (equivalent to MPIT categories).
Notes:
- Variables must be created with a backing store (char **, int *, or bool *)
that must live at least as long as the variable.
- Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of
mca_base_var_set_value() to change the value.
- String values are duplicated when the variable is registered. It is up to
the caller to free the original value if necessary. The new value will be
freed by the mca_base_var system and must not be freed by the user.
- Variables with constant scope may not be settable.
- Variable groups (and all associated variables) are deregistered when the
component is closed or the component repository item is freed. This
prevents a segmentation fault from accessing a variable after its component
is unloaded.
- After some discussion we decided we should remove the automatic registration
of component priority variables. Few component actually made use of this
feature.
- The enumerator interface was updated to be general enough to handle
future uses of the interface.
- The code to generate ompi_info output has been moved into the MCA variable
system. See mca_base_var_dump().
opal: update core and components to mca_base_var system
orte: update core and components to mca_base_var system
ompi: update core and components to mca_base_var system
This commit also modifies the rmaps framework. The following variables were
moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode,
rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables.
This commit was SVN r28236.
Update all the orte ess components to remove their associated APIs for retrieving proc data. Update the grpcomm API to reflect transfer of set/get modex info to the db framework.
Note that this doesn't recreate the old GPR. This is strictly a local db storage that may (at some point) obtain any missing data from the local daemon as part of an async methodology. The framework allows us to experiment with such methods without perturbing the default one.
This commit was SVN r26678.
Roll in the ORTE state machine. Remove last traces of opal_sos. Remove UTK epoch code.
Please see the various emails about the state machine change for details. I'll send something out later with more info on the new arch.
This commit was SVN r26242.
Brian dealt with this in the past by creating platform files and using "no-build" to block the components. This was clunky, but acceptable when only one organization was using that option. However, that number has now expanded to at least two more locations.
Accordingly, make --without-rte-support actually work by adding appropriate configury to prevent components from building when they shouldn't. While doing so, remove two frameworks (db and rmcast) that are no longer used as ORCM comes to a close (besides, they belonged in ORCM now anyway). Do some minor cleanups along the way.
This commit was SVN r25497.
0 == ORTE_EPOCH_CMP(target->epoch,ORTE_EPOCH_INVALID)
when epoch is not configured as this will always return true. This caused get_route to return an error in all non-binomial routed modules, and caused all components to return an error when delete_route was called.
So protect the checks with ORTE_ENABLE_EPOCH so we get the correct behavior.
This commit was SVN r25274.
To enable the epochs and the resilient orte code, use the configure flag:
--enable-resilient-orte
This will define both:
ORTE_ENABLE_EPOCH
ORTE_RESIL_ORTE
This commit was SVN r25093.
Over the course of time, usage of static ports got corrupted in several places, the "parent" info got incorrectly reset, etc. So correct all that and get the regex-based wireup going again.
Also, don't pass node lists if static ports aren't enabled - they are of no value to the orted and just create the possibility of overly-long cmd lines.
This commit was SVN r24860.
This merges the branch containing the revamped build system based around converting autogen from a bash script to a Perl program. Jeff has provided emails explaining the features contained in the change.
Please note that configure requirements on components HAVE CHANGED. For example. a configure.params file is no longer required in each component directory. See Jeff's emails for an explanation.
This commit was SVN r23764.
Create an ability to store the contact info for multiple HNPs being used to route between different job families. Modify the dpm orte module to pass the resulting store during the connect_accept procedure so that all jobs involved in the resulting communicator know how to route OOB messages between them.
Add a test provided by Philippe that tests this ability.
This commit was SVN r23438.
The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang.
This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is:
* pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place
* modified the errmgr to directly call the new routines when termination is detected
* removed the grpcomm.onesided_barrier and its associated RML tag
* add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree
* use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero
Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial.
This commit was SVN r23429.
(OMPI_ERR_* = OPAL_SOS_GET_ERR_CODE(ret)), since the return value could be a
SOS-encoded error. The OPAL_SOS_GET_ERR_CODE() takes in a SOS error and returns
back the native error code.
* Since OPAL_SUCCESS is preserved by SOS, also change all calls of the form
(OPAL_ERROR == ret) to (OPAL_SUCCESS != ret). We thus avoid having to
decode 'ret' to get the native error code.
This commit was SVN r23162.
* add hnp and orted modules to the errmgr framework. The HNP module contains much of the code that was in the errmgr base since that code could only be executed by the HNP anyway.
* update the odls to report process states directly into the active errmgr module, thus removing the need to send messages looped back into the odls cmd processor. Let the active errmgr module decide what to do at various states.
* remove the code to track application state progress from the plm_base_launch_support.c code. Update the plm modules to call the errmgr directly when a launch fails.
* update the plm_base_receive.c code to call the errmgr with state updates from remote daemons
* update the routed modules to reflect that process state is updated in the errmgr
* ensure that the orted's open the errmgr and select their appropriate module
* add new pretty-print utilities to print process and job state. Move the pretty-print of time info to a globally-accessible place
* define a global orte_comm function to send messages from orted's to the HNP so that others can overlay the standard RML methods, if desired.
* update the orterun help output to reflect that the "term w/o sync" error message can result from three, not two, scenarios
This commit was SVN r23023.
Many of the OPAL_ENABLE_FT should be OPAL_ENABLE_FT_CR, so fix those.
The OPAL Layer INC should call opal_output on restart so that it can refresh the string it prints to reflect the current pid/hostname which may have changed.
This commit was SVN r22824.
This causes the orteds in the routing tree to remain alive until all termination "acks" from orteds below them have passed through. Thus, if we use static ports, we no longer require a direct orted-to-mpirun connection.
Also modify the binomial routed module so it conforms to what all the other routed modules do and have all messages pass along the routing tree instead of short-circuiting between orteds. This further reduces the number of ports being opened on backend nodes.
This commit was SVN r21203.