1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
Mostly TAB to spaces changes, though a couple style fixes were included as well.
The tab/space issue was causing problems with off-trunk branch merging.
This commit was SVN r23827.
INTERNAL to EXTRA_RETAIN, because not all "internal" communicators
have this flag set (only internal communicators with CIDs less than
their parent). Hence, what this flag ''really'' means is that there
was an extra RETAIN performed on it. So name the flag just that --
EXTRA_RETAIN -- indicating that an extra RETAIN has occurred.
This commit was SVN r22690.
The following SVN revision numbers were found above:
r22671 --> open-mpi/ompi@61dee816db
communicator that we created has a lower CID than the parent comm. This can
happen when using the hierarch collective communication module or for
inter-communicators (since we make a duplicate of the original communicator).
This is not a problem as long as the user calls MPI_Comm_free on the parent
communicator. However, if the communicators are not freed by the user but
released by Open MPI in MPI_Finalize, we walk through the list of still
available communicators and free them one by one. Thus, local_comm is freed
before the actual inter-communicator. However, the local_comm pointer in the
inter communicator will still contain the 'previous' address of the local_comm
and thus this will lead to a segmentation violation. In order to prevent that
from happening, we increase the reference counter local_comm by one if its CID
is lower than the parent. We cannot increase however its reference counter if
the CID of local_comm is larger than the CID of the inter communicators, since
a regular MPI_Comm_free would leave in that the case the local_comm hanging
around and thus we would not recycle CID's properly, which was the reason and
the cause for this trouble.
This commit fixes tickets 2094 and 2166. Note however, that I want to close
them manually, since a slightly different patch is required for the 1.4
series. This commit will have to be applied for the 1.5 series. And I will
need a volunteer to review it.
This commit was SVN r22671.
different processes have requested different levels of thread support. This
verification is restricted to MPI_COMM_WORLD.
In case one ore more processes have requested support for MPI_THREAD_MULTIPLE,
the cid selection algorithm will fall back to the original, thread safe
approach. Else, it uses the block-algorithm.
For dynamic communicators, we always fall back now to the original algorithm.
This has been tested for homogeneous and heterogeneous settings for
MCW. However, I could not test yet the dynamic comm scenario for technical
reasons, and that's why I don't close yet ticket 1949.
This commit was SVN r21613.
not end up in OPAL
- Will post an updated patch for the OMPI_ALIGNMENT_ parts (within C).
This commit was SVN r21342.
The following SVN revision numbers were found above:
r21330 --> open-mpi/ompi@95596d1814
into the OPAL namespace, eliminating cases like opal/util/arch.c
testing for ompi_fortran_logical_t.
As this is processor- and compiler-related information
(e.g. does the compiler/architecture support REAL*16)
this should have been on the OPAL layer.
- Unifies f77 code using MPI_Flogical instead of opal_fortran_logical_t
- Tested locally (Linux/x86-64) with mpich and intel testsuite
but would like to get this week-ends MTT output
- PLEASE NOTE: configure-internal macro-names and
ompi_cv_ variables have not been changed, so that
external platform (not in contrib/) files still work.
This commit was SVN r21330.
happens when hierarch is used. . Two major items:
- modify the comm_activate step to take an additional argument, indicating
whether the new communicatio has to go through the collective selection
step. This is not required sometimes (e.g. when a process calls
MPI_COMM_SPLIT with color=MPI_UNDEFINED), and contributed significantly to
the exhaustion of cids.
- when freeing a communicator, check whether we can reuse the block of cids
assigned to that comm. This only works if the current front of the cid
assignment (cid_block_start) is right ater the block of cids assigned to this
comm.
Fixes trac:1904
Fixes trac:1926
This commit was SVN r21296.
The following Trac tickets were found above:
Ticket 1904 --> https://svn.open-mpi.org/trac/ompi/ticket/1904
Ticket 1926 --> https://svn.open-mpi.org/trac/ompi/ticket/1926
- Delete unnecessary header files using
contrib/check_unnecessary_headers.sh after applying
patches, that include headers, being "lost" due to
inclusion in one of the now deleted headers...
In total 817 files are touched.
In ompi/mpi/c/ header files are moved up into the actual c-file,
where necessary (these are the only additional #include),
otherwise it is only deletions of #include (apart from the above
additions required due to notifier...)
- To get different MCAs (OpenIB, TM, ALPS), an earlier version was
successfully compiled (yesterday) on:
Linux locally using intel-11, gcc-4.3.2 and gcc-SVN + warnings enabled
Smoky cluster (x86-64 running Linux) using PGI-8.0.2 + warnings enabled
Lens cluster (x86-64 running Linux) using Pathscale-3.2 + warnings enabled
This commit was SVN r21096.
After much work by Jeff and myself, and quite a lot of discussion, it has become clear that we simply cannot resolve the infinite loops caused by RML-involved subsystems calling orte_output. The original rationale for the change to orte_output has also been reduced by shifting the output of XML-formatted vs human readable messages to an alternative approach.
I have globally replaced the orte_output/ORTE_OUTPUT calls in the code base, as well as the corresponding .h file name. I have test compiled and run this on the various environments within my reach, so hopefully this will prove minimally disruptive.
This commit was SVN r18619.
such, the commit message back to the master SVN repository is fairly
long.
= ORTE Job-Level Output Messages =
Add two new interfaces that should be used for all new code throughout
the ORTE and OMPI layers (we already make the search-and-replace on
the existing ORTE / OMPI layers):
* orte_output(): (and corresponding friends ORTE_OUTPUT,
orte_output_verbose, etc.) This function sends the output directly
to the HNP for processing as part of a job-specific output
channel. It supports all the same outputs as opal_output()
(syslog, file, stdout, stderr), but for stdout/stderr, the output
is sent to the HNP for processing and output. More on this below.
* orte_show_help(): This function is a drop-in-replacement for
opal_show_help(), with two differences in functionality:
1. the rendered text help message output is sent to the HNP for
display (rather than outputting directly into the process' stderr
stream)
1. the HNP detects duplicate help messages and does not display them
(so that you don't see the same error message N times, once from
each of your N MPI processes); instead, it counts "new" instances
of the help message and displays a message every ~5 seconds when
there are new ones ("I got X new copies of the help message...")
opal_show_help and opal_output still exist, but they only output in
the current process. The intent for the new orte_* functions is that
they can apply job-level intelligence to the output. As such, we
recommend that all new ORTE and OMPI code use the new orte_*
functions, not thei opal_* functions.
=== New code ===
For ORTE and OMPI programmers, here's what you need to do differently
in new code:
* Do not include opal/util/show_help.h or opal/util/output.h.
Instead, include orte/util/output.h (this one header file has
declarations for both the orte_output() series of functions and
orte_show_help()).
* Effectively s/opal_output/orte_output/gi throughout your code.
Note that orte_output_open() takes a slightly different argument
list (as a way to pass data to the filtering stream -- see below),
so you if explicitly call opal_output_open(), you'll need to
slightly adapt to the new signature of orte_output_open().
* Literally s/opal_show_help/orte_show_help/. The function signature
is identical.
=== Notes ===
* orte_output'ing to stream 0 will do similar to what
opal_output'ing did, so leaving a hard-coded "0" as the first
argument is safe.
* For systems that do not use ORTE's RML or the HNP, the effect of
orte_output_* and orte_show_help will be identical to their opal
counterparts (the additional information passed to
orte_output_open() will be lost!). Indeed, the orte_* functions
simply become trivial wrappers to their opal_* counterparts. Note
that we have not tested this; the code is simple but it is quite
possible that we mucked something up.
= Filter Framework =
Messages sent view the new orte_* functions described above and
messages output via the IOF on the HNP will now optionally be passed
through a new "filter" framework before being output to
stdout/stderr. The "filter" OPAL MCA framework is intended to allow
preprocessing to messages before they are sent to their final
destinations. The first component that was written in the filter
framework was to create an XML stream, segregating all the messages
into different XML tags, etc. This will allow 3rd party tools to read
the stdout/stderr from the HNP and be able to know exactly what each
text message is (e.g., a help message, another OMPI infrastructure
message, stdout from the user process, stderr from the user process,
etc.).
Filtering is not active by default. Filter components must be
specifically requested, such as:
{{{
$ mpirun --mca filter xml ...
}}}
There can only be one filter component active.
= New MCA Parameters =
The new functionality described above introduces two new MCA
parameters:
* '''orte_base_help_aggregate''': Defaults to 1 (true), meaning that
help messages will be aggregated, as described above. If set to 0,
all help messages will be displayed, even if they are duplicates
(i.e., the original behavior).
* '''orte_base_show_output_recursions''': An MCA parameter to help
debug one of the known issues, described below. It is likely that
this MCA parameter will disappear before v1.3 final.
= Known Issues =
* The XML filter component is not complete. The current output from
this component is preliminary and not real XML. A bit more work
needs to be done to configure.m4 search for an appropriate XML
library/link it in/use it at run time.
* There are possible recursion loops in the orte_output() and
orte_show_help() functions -- e.g., if RML send calls orte_output()
or orte_show_help(). We have some ideas how to fix these, but
figured that it was ok to commit before feature freeze with known
issues. The code currently contains sub-optimal workarounds so
that this will not be a problem, but it would be good to actually
solve the problem rather than have hackish workarounds before v1.3 final.
This commit was SVN r18434.
(sometimes after the merge with the ORTE branch), the opal_pointer_array
will became the only pointer_array implementation (the orte_pointer_array
will be removed).
This commit was SVN r17007.
used at nce (up to one unique collective module per collective function).
Matches r15795:15921 of the tmp/bwb-coll-select branch
This commit was SVN r15924.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r15795
r15921
creating ompi_mpi_comm_null, since the destructor of ompi_mpi_comm_null will
decrease the reference counter of ompi_mpi_group_null twice according to the
last fix of Mohamad.
Added also a lengthy comment in ompi_comm_finalize about why we do
not decrease the reference counters for ompi_mpi_comm_null,
ompi_mpi_group_null etc. for the parent
communicator, although we do increase it in ompi_comm_init
This commit was SVN r14210.
all platforms. The only exceptions (and I will not deal with them
anytime soon) are on Windows:
- the write functions which require the length to be an int when it's
a size_t on all UNIX variants.
- all iovec manipulation functions where the iov_len is again an int
when it's a size_t on most of the UNIXes.
As these only happens on Windows, so I think we're set for now :)
This commit was SVN r12215.
long ago) supposed to be used as a cache for accessing the PML procs. But in
all of the PMLs the PML proc contain only one field i.e. a pointer to the ompi_proc.
This pointer can be accessed using the c_remote_group easily. Therefore, there is no
meaning of keeping the PML procs around. Slim fast commit ...
This commit was SVN r11730.
- My original patch stands: MPI_FINALIZE directly invokes the
attribute callbacks on MPI_COMM_SELF
- We added some user-level checks to ensure that they don't call
MPI_FINALIZE twice (this isn't really required, but it will prevent
whacky segv's -- they'll at least get a nice error message)
- Removed the attribute callbacks on MPI_COMM_SELF from
ompi_mpi_comm_finalize (i.e., we just moved them from
ompi_mpi_comm_finalize to ompi_mpi_finalize -- we just moved this
process up earlier in the MPI_FINALIZE sequence of events)
- Because there were so many conversations about this, here's the
rationale:
- MPI-2:4.8 says that we have to MPI_COMM_FREE MPI_COMM_SELF so that
the attribute callbacks are invoked.
- After considerable discussion, we came to the conclusion that
FREE'ing COMM_SELF is not the issue -- calling the callbacks is
the issue.
- So it is sufficent for MPI_FINALIZE to directly invoke these
attribute callbacks
- The attribute callbacks are *not* invoked on other communicators
because said communicators are not MPI_COMM_FREE'ed
This commit was SVN r9628.
version 1.12. As in the 2.0 everything related to windows and files has been removed
I prefer to add the complete files, so I have a trace in the SN for later.
This commit was SVN r9373.
- move files out of toplevel include/ and etc/, moving it into the
sub-projects
- rather than including config headers with <project>/include,
have them as <project>
- require all headers to be included with a project prefix, with
the exception of the config headers ({opal,orte,ompi}_config.h
mpi.h, and mpif.h)
This commit was SVN r8985.
* rename ompi_basename to opal_basename
* rename ompi bitop functions to opal
* rename ompi_cmd_line to opal_cmd_line
* rename ompi_sizet2int to opal_sizet2int
* rename orte_daemon_init to opal_daemon_init
* rename ompi_few to opal_few
This commit was SVN r6330.