Add a framework to support different types of threading models including
user space thread packages such as Qthreads and argobot:
https://github.com/pmodels/argobotshttps://github.com/Qthreads/qthreads
The default threading model is pthreads. Alternate thread models are
specificed at configure time using the --with-threads=X option.
The framework is static. The theading model to use is selected at
Open MPI configure/build time.
mca/threads: implement Argobots threading layer
config: fix thread configury
- Add double quotations
- Change Argobot to Argobots
config: implement Argobots check
If the poll time is too long, MPI hangs.
This quick fix just sets it to 0, but it is not good for the
Pthreads version. Need to find a good way to abstract it.
Note that even 1 (= 1 millisecond) causes disastrous performance
degradation.
rework threads MCA framework configury
It now works more like the ompi/mca/rte configury,
modulo some edge items that are special for threading package
linking, etc.
qthreads module
some argobots cleanup
Signed-off-by: Noah Evans <noah.evans@gmail.com>
Signed-off-by: Shintaro Iwasaki <siwasaki@anl.gov>
Signed-off-by: Howard Pritchard <howardp@lanl.gov>
We currently save the hostname of a proc when we create the ompi_proc_t for it. This was originally done because the only method we had for discovering the host of a proc was to include that info in the modex, and we had to therefore store it somewhere proc-local. Obviously, this ccarried a memory penalty for storing all those strings, and so we added a "cutoff" parameter so that we wouldn't collect hostnames above a certain number of procs.
Unfortunately, this still results in an 8-byte/proc memory cost as we have a char* pointer in the opal_proc_t that is contained in the ompi_proc_t so that we can store the hostname of the other procs if we fall below the cutoff. At scale, this can consume a fair amount of memory.
With the switch to relying on PMIx, there is no longer a need to cache the proc hostnames. Using the "optional" feature of PMIx_Get, we restrict the retrieval to be purely proc-local - i.e., we retrieve the info either via shared memory or from within the proc-internal hash storage (depending upon the active PMIx components). Thus, the retrieval of a hostname is purely a local operation involving no communication.
All RM's are required to provide a complete hostname map of all procs at startup. Thus, we have full access to all hostnames without including them in a modex or having to cache them on each proc. This allows us to remove the char* pointer from the opal_proc_t, saving us 8-bytes/proc.
Unfortunately, PMIx_Get does not currently support the return of a static pointer to memory. Thus, even though PMIx has the hostname in its memory, it can only return a malloc'd version of it. I have therefore ensured that the return from opal_get_proc_hostname is consistently malloc'd and free'd wherever used. This shouldn't be a burden as the hostname is only used in one of two circumstances:
(a) in an error message
(b) in a verbose output for debugging purposes
Thus, there should be no performance penalty associated with the malloc/free requirement. PMIx will eventually be returning static pointers, and so we can eventually simplify this method and return a "const char*" - but as noted, this really isn't an issue even today.
Signed-off-by: Ralph Castain <rhc@pmix.org>
- Port memchecker call from a1d502c.
- Remove unused memcheck macro variables.
- Some code readability improvements.
- Remove some stray +1's in dynamic comm cleanup.
- Re-add OPAL_ENABLE_DEBUG macro to osc header.
- Cleanup some printf's, and includes.
- Refactor cleanup of dpm_disconnect_objs.
Signed-off-by: Austen Lauria <awlauria@us.ibm.com>
This commit adds a new mpool base module type: basic. This module can
be used with an opal_free_list_t to allocate space from a
pre-allocated block (such as a shared memory region). The new module
only supports allocation and is not meant for more dynamic use cases
at this time.
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
The Open MPI code base assumed that asprintf always behaved like
the FreeBSD variant, where ptr is set to NULL on error. However,
the C standard (and Linux) only guarantee that the return code will
be -1 on error and leave ptr undefined. Rather than fix all the
usage in the code, we use opal_asprintf() wrapper instead, which
guarantees the BSD-like behavior of ptr always being set to NULL.
In addition to being correct, this will fix many, many warnings
in the Open MPI code base.
Signed-off-by: Brian Barrett <bbarrett@amazon.com>
set the key of all mpool_tree_item objects, so they can be retrieved
in mpool_base_free and then returned back to the
mca_mpool_base_tree_item_free_list free list.
Refs. open-mpi/ompi#4567
Thanks Philip Blakely for the bug report.
Signed-off-by: Gilles Gouaillardet <gilles@rist.or.jp>
The expected sequence of events for processing info during object creation
is that if there's an incoming info arg, it is opal_info_dup()ed into the obj
at obj->s_info first. Then interested components register callbacks for
keys they want to know about using opal_infosubscribe_infosubscribe().
Inside info_subscribe_subscribe() the specified callback() is called with
whatever matching k/v is in the object's info, or with the default. The
return string from the callback goes into the new k/v stored in info, and
the input k/v is saved as __IN_<key>/<val>. It's saved the same way
whether the input came from info or whether it was a default. A null return
from the callback indicates an ignored key/val, and no k/v is stored for
it, but an __IN_<key>/<val> is still kept so we still have access to the
original.
At MPI_*_set_info() time, opal_infosubscribe_change_info() is used. That
function calls the registered callbacks for each item in the provided info.
If the callback returns non-null, the info is updated with that k/v, or if
the callback returns null, that key is deleted from info. An __IN_<key>/<val>
is saved either way, and overwrites any previously saved value.
When MPI_*_get_info() is called, opal_info_dup_mpistandard() is used, which
allows relatively easy changes in interpretation of the standard, by looking
at both the <key>/<val> and __IN_<key>/<val> in info. Right now it does
1. includes system extras, eg k/v defaults not expliclty set by the user
2. omits ignored keys
3. shows input values, not callback modifications, eg not the internal values
Currently the callbacks are doing things like
return some_condition ? "true" : "false"
that is, returning static strings that are not to be freed. If the return
strings start becoming more dynamic in the future I don't see how unallocated
strings could support that, so I'd propose a change for the future that
the callback()s registered with info_subscribe_subscribe() do a strdup on
their return, and we change the callers of callback() to free the strings
it returns (there are only two callers).
Rough outline of the smaller changes spread over the less central files:
comm.c
initialize comm->super.s_info to NULL
copy into comm->super.s_info in comm creation calls that provide info
OBJ_RELEASE comm->super.s_info at free time
comm_init.c
initialize comm->super.s_info to NULL
file.c
copy into file->super.s_info if file creation provides info
OBJ_RELEASE file->super.s_info at free time
win.c
copy into win->super.s_info if win creation provides info
OBJ_RELEASE win->super.s_info at free time
comm_get_info.c
file_get_info.c
win_get_info.c
change_info() if there's no info attached (shouldn't happen if callbacks
are registered)
copy the info for the user
The other category of change is generally addressing compiler warnings where
ompi_info_t and opal_info_t were being used a little too interchangably. An
ompi_info_t* contains an opal_info_t*, at &(ompi_info->super)
Also this commit updates the copyrights.
Signed-off-by: Mark Allen <markalle@us.ibm.com>
ompi_communicator_t, ompi_win_t, ompi_file_t all have a super class of type opal_infosubscriber_t instead of a base/super type of opal_object_t (in previous code comm used c_base, but file used super). It may be a bit bold to say that being a subscriber of MPI_Info is the foundational piece that ties these three things together, but if you object, then I would prefer to turn infosubscriber into a more general name that encompasses other common features rather than create a different super class. The key here is that we want to be able to pass comm, win and file objects as if they were opal_infosubscriber_t, so that one routine can heandle all 3 types of objects being passed to it.
MPI_INFO_NULL is still an ompi_predefined_info_t type since an MPI_Info is part of ompi but the internal details of the underlying information concept is part of opal.
An ompi_info_t type still exists for exposure to the user, but it is simply a wrapper for the opal object.
Routines such as ompi_info_dup, etc have all been moved to opal_info_dup and related to the opal directory.
Fortran to C translation tables are only used for MPI_Info that is exposed to the application and are therefore part of the ompi_info_t and not the opal_info_t
The data structure changes are primarily in the following files:
communicator/communicator.h
ompi/info/info.h
ompi/win/win.h
ompi/file/file.h
The following new files were created:
opal/util/info.h
opal/util/info.c
opal/util/info_subscriber.h
opal/util/info_subscriber.c
This infosubscriber concept is that communicators, files and windows can have subscribers that subscribe to any changes in the info associated with the comm/file/window. When xxx_set_info is called, the new info is presented to each subscriber who can modify the info in any way they want. The new value is presented to the next subscriber and so on until all subscribers have had a chance to modify the value. Therefore, the order of subscribers can make a difference but we hope that there is generally only one subscriber that cares or modifies any given key/value pair. The final info is then stored and returned by a call to xxx_get_info.
The new model can be seen in the following files:
ompi/mpi/c/comm_get_info.c
ompi/mpi/c/comm_set_info.c
ompi/mpi/c/file_get_info.c
ompi/mpi/c/file_set_info.c
ompi/mpi/c/win_get_info.c
ompi/mpi/c/win_set_info.c
The current subscribers where changed as follows:
mca/io/ompio/io_ompio_file_open.c
mca/io/ompio/io_ompio_module.c
mca/osc/rmda/osc_rdma_component.c (This one actually subscribes to "no_locks")
mca/osc/sm/osc_sm_component.c (This one actually subscribes to "blocking_fence" and "alloc_shared_contig")
Signed-off-by: Mark Allen <markalle@us.ibm.com>
Conflicts:
AUTHORS
ompi/communicator/comm.c
ompi/debuggers/ompi_mpihandles_dll.c
ompi/file/file.c
ompi/file/file.h
ompi/info/info.c
ompi/mca/io/ompio/io_ompio.h
ompi/mca/io/ompio/io_ompio_file_open.c
ompi/mca/io/ompio/io_ompio_file_set_view.c
ompi/mca/osc/pt2pt/osc_pt2pt.h
ompi/mca/sharedfp/addproc/sharedfp_addproc.h
ompi/mca/sharedfp/addproc/sharedfp_addproc_file_open.c
ompi/mca/topo/treematch/topo_treematch_dist_graph_create.c
ompi/mpi/c/lookup_name.c
ompi/mpi/c/publish_name.c
ompi/mpi/c/unpublish_name.c
opal/mca/mpool/base/mpool_base_alloc.c
opal/util/Makefile.am
This commit rewrites both the mpool and rcache frameworks. Summary of
changes:
- Before this change a significant portion of the rcache
functionality lived in mpool components. This meant that it was
impossible to add a new memory pool to use with rdma networks
(ugni, openib, etc) without duplicating the functionality of an
existing mpool component. All the registration functionality has
been removed from the mpool and placed in the rcache framework.
- All registration cache mpools components (udreg, grdma, gpusm,
rgpusm) have been changed to rcache components. rcaches are
allocated and released in the same way mpool components were.
- It is now valid to pass NULL as the resources argument when
creating an rcache. At this time the gpusm and rgpusm components
support this. All other rcache components require non-NULL
resources.
- A new mpool component has been added: hugepage. This component
supports huge page allocations on linux.
- Memory pools are now allocated using "hints". Each mpool component
is queried with the hints and returns a priority. The current hints
supported are NULL (uses posix_memalign/malloc), page_size=x (huge
page mpool), and mpool=x.
- The sm mpool has been moved to common/sm. This reflects that the sm
mpool is specialized and not meant for any general
allocations. This mpool may be moved back into the mpool framework
if there is any objection.
- The opal_free_list_init arguments have been updated. The unused0
argument is not used to pass in the registration cache module. The
mpool registration flags are now rcache registration flags.
- All components have been updated to make use of the new framework
interfaces.
As this commit makes significant changes to both the mpool and rcache
frameworks both versions have been bumped to 3.0.0.
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
This commit adds a access_flags argument to the mpool registration
function. This flag indicates what kind of access is being requested:
local write, remote read, remote write, and remote atomic. The values
of the registration access flags in the btl are tied to the new flags
in the mpool. All mpools have been updated to include the new argument
but only the grdma and udreg mpools have been updated to make use of
the access flags. In both mpools existing registrations are checked
for sufficient access before being returned. If a registration does
not contain sufficient access it is marked as invalid and a new
registration is generated.
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
This commit does two things. It removes checks for C99 required
headers (stdlib.h, string.h, signal.h, etc). Additionally it removes
definitions for required C99 types (intptr_t, int64_t, int32_t, etc).
Signed-off-by: Nathan Hjelm <hjelmn@me.com>
A few uninitialized common symbols are remaining:
common symbols generated by flex :
* opal/util/keyval/keyval_lex.l: opal_util_keyval_yyleng
* opal/util/keyval/keyval_lex.o: opal_util_keyval_yytext
* opal/util/show_help_lex.l: opal_show_help_yyleng
* opal/util/show_help_lex.l: opal_show_help_yytext
common symbol generated by "external" hwloc library:
* opal/mca/hwloc/hwloc191/hwloc/src/components.o: component_map
Use of the old ompi_free_list_t and ompi_free_list_item_t is
deprecated. These classes will be removed in a future commit.
This commit updates the entire code base to use opal_free_list_t and
opal_free_list_item_t.
Notes:
OMPI_FREE_LIST_*_MT -> opal_free_list_* (uses opal_using_threads ())
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
This commit adds an owner file in each of the component directories
for each framework. This allows for a simple script to parse
the contents of the files and generate, among other things, tables
to be used on the project's wiki page. Currently there are two
"fields" in the file, an owner and a status. A tool to parse
the files and generate tables for the wiki page will be added
in a subsequent commit.
WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL
All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic.
This commit was SVN r32317.
- move mpool and allocator frameworks back to ompi (from opal)
- specialize the ompi_free_list class to use an mpool instance
- un-specialize opal_free_list to *not* use mpool; just use malloc/free
This commit was SVN r6292.