inserted in the ompi_proc_list as soon as it is created and it
is removed only upon the call to the destructor. In ompi_proc_finalize
we loop over all procs in ompi_proc_finalize and release them once.
However, as a proc is not removed from this list right away, we
decrease the ref count for each proc until it reach zero and the
proc is finally removed. Thus, we cannot clean the BML/BTL after
the call the ompi_proc_finalize.
A quick fix is to delay the call to ompi_proc_finalize until all
other frameworks have been finalized, and then the behavior
depicted above will give the expected outcome.
Replace our old, clunky timing setup with a much nicer one that is only available if configured with --enable-timing. Add a tool for profiling clock differences between the nodes so you can get more precise timing measurements. I'll ask Artem to update the Github wiki with full instructions on how to use this setup.
This commit was SVN r32738.
WHAT: Merge the PMIx branch into the devel repo, creating a new
OPAL “lmix” framework to abstract PMI support for all RTEs.
Replace the ORTE daemon-level collectives with a new PMIx
server and update the ORTE grpcomm framework to support
server-to-server collectives
WHY: We’ve had problems dealing with variations in PMI implementations,
and need to extend the existing PMI definitions to meet exascale
requirements.
WHEN: Mon, Aug 25
WHERE: https://github.com/rhc54/ompi-svn-mirror.git
Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding.
All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level.
Accordingly, we have:
* created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations.
* Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported.
* Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint
* removed the prior OMPI/OPAL modex code
* added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform.
* retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand
This commit was SVN r32570.
WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL
All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic.
This commit was SVN r32317.
We have been getting several requests for new collectives that need to be inserted in various places of the MPI layer, all in support of either checkpoint/restart or various research efforts. Until now, this would require that the collective id's be generated at launch. which required modification
s to ORTE and other places. We chose not to make collectives reusable as the race conditions associated with resetting collective counters are daunti
ng.
This commit extends the collective system to allow self-generation of collective id's that the daemons need to support, thereby allowing developers to request any number of collectives for their work. There is one restriction: RTE collectives must occur at the process level - i.e., we don't curren
tly have a way of tagging the collective to a specific thread. From the comment in the code:
* In order to allow scalable
* generation of collective id's, they are formed as:
*
* top 32-bits are the jobid of the procs involved in
* the collective. For collectives across multiple jobs
* (e.g., in a connect_accept), the daemon jobid will
* be used as the id will be issued by mpirun. This
* won't cause problems because daemons don't use the
* collective_id
*
* bottom 32-bits are a rolling counter that recycles
* when the max is hit. The daemon will cleanup each
* collective upon completion, so this means a job can
* never have more than 2**32 collectives going on at
* a time. If someone needs more than that - they've got
* a problem.
*
* Note that this means (for now) that RTE-level collectives
* cannot be done by individual threads - they must be
* done at the overall process level. This is required as
* there is no guaranteed ordering for the collective id's,
* and all the participants must agree on the id of the
* collective they are executing. So if thread A on one
* process asks for a collective id before thread B does,
* but B asks before A on another process, the collectives will
* be mixed and not result in the expected behavior. We may
* find a way to relax this requirement in the future by
* adding a thread context id to the jobid field (maybe taking the
* lower 16-bits of that field).
This commit includes a test program (orte/test/mpi/coll_test.c) that cycles 100 times across barrier and modex collectives.
This commit was SVN r32203.
Based on extensive discussions before/at the June 2014 developer's
meeting, put a lengthy comment explaining a second reason why we
''must'' use an RTE barrier during MPI_FINALIZE and
MPI_COMM_DISCONNECT (i.e., unreliable transports). Slightly explain
more the original reason why we do this, too (BTLs can lie/buffer a
message without actually injecting it on the network).
This commit was SVN r32095.
This commit fixes leaks of bml endpoints in finalize. A summary of the
bugs/fixes is below.
1) ompi_mpi_finalize used ompi_proc_all to get the list of procs but
never released the reference to them (ompi_proc_all called
OBJ_RETAIN on all the procs returned). When calling del_procs at
finalize it should suffice to call ompi_proc_world which does not
increment the reference count.
2) del_procs is called BEFORE ompi_comm_finalize. This leaves the
references to the procs from calling the pml_add_comm
function. The fix is to reorder the calls to do omp_comm_finalize,
del_procs, pml_finalize instead of del_procs, pml_finalize,
ompi_comm_finalize.
3) The check in del_procs in r2 checked for a reference count of
1. This is incorrect. At this point there should be 2 references:
1 from ompi_proc, and another from the add_procs. The fix is to
change this check to look for a reference count of 22. This check
makes me extremely uncomforable as nothing will call del_procs if
the reference count of a procs is not 2 when del_procs is
called. Maybe there should be an assert since this is a developer
error IMHO.
cmr=v1.8.2:reviewer=bosilca
This commit was SVN r31782.
The following SVN revision numbers were found above:
r2 --> open-mpi/ompi@58fdc18855
This commit fixes three leaks:
- bml/r2: fix leak of del_procs in mca_bml_r2_del_procs
- Release the modex data in btl/scif, btl/ugni, and btl/vader
- ompi_mpi_finalize: close the allocator framework
cmr=v1.8.2:reviewer=jsquyres
This commit was SVN r31778.
The following SVN revision numbers were found above:
r2 --> open-mpi/ompi@58fdc18855
So track that the rte has reached that point, and only emit the new message if it is accurate.
Note that we still generate a TON of output for a minor error:
Ralphs-iMac:examples rhc$ mpirun -n 3 -mca btl sm ./hello_c
--------------------------------------------------------------------------
At least one pair of MPI processes are unable to reach each other for
MPI communications. This means that no Open MPI device has indicated
that it can be used to communicate between these processes. This is
an error; Open MPI requires that all MPI processes be able to reach
each other. This error can sometimes be the result of forgetting to
specify the "self" BTL.
Process 1 ([[50239,1],2]) is on host: Ralphs-iMac
Process 2 ([[50239,1],2]) is on host: Ralphs-iMac
BTLs attempted: sm
Your MPI job is now going to abort; sorry.
--------------------------------------------------------------------------
*** An error occurred in MPI_Init
*** on a NULL communicator
*** MPI_ERRORS_ARE_FATAL (processes in this communicator will now abort,
*** and potentially your MPI job)
*** An error occurred in MPI_Init
*** on a NULL communicator
*** MPI_ERRORS_ARE_FATAL (processes in this communicator will now abort,
*** and potentially your MPI job)
*** An error occurred in MPI_Init
*** on a NULL communicator
*** MPI_ERRORS_ARE_FATAL (processes in this communicator will now abort,
*** and potentially your MPI job)
--------------------------------------------------------------------------
MPI_INIT has failed because at least one MPI process is unreachable
from another. This *usually* means that an underlying communication
plugin -- such as a BTL or an MTL -- has either not loaded or not
allowed itself to be used. Your MPI job will now abort.
You may wish to try to narrow down the problem;
* Check the output of ompi_info to see which BTL/MTL plugins are
available.
* Run your application with MPI_THREAD_SINGLE.
* Set the MCA parameter btl_base_verbose to 100 (or mtl_base_verbose,
if using MTL-based communications) to see exactly which
communication plugins were considered and/or discarded.
--------------------------------------------------------------------------
-------------------------------------------------------
Primary job terminated normally, but 1 process returned
a non-zero exit code.. Per user-direction, the job has been aborted.
-------------------------------------------------------
--------------------------------------------------------------------------
mpirun detected that one or more processes exited with non-zero status, thus causing
the job to be terminated. The first process to do so was:
Process name: [[50239,1],2]
Exit code: 1
--------------------------------------------------------------------------
[Ralphs-iMac.local:23227] 2 more processes have sent help message help-mca-bml-r2.txt / unreachable proc
[Ralphs-iMac.local:23227] Set MCA parameter "orte_base_help_aggregate" to 0 to see all help / error messages
[Ralphs-iMac.local:23227] 2 more processes have sent help message help-mpi-runtime / mpi_init:startup:pml-add-procs-fail
Ralphs-iMac:examples rhc$
Hopefully, we can agree on a way to reduce this verbage!
This commit was SVN r31686.
The following SVN revision numbers were found above:
r2 --> open-mpi/ompi@58fdc18855
the fortran handle. Use a seperate opal_pointer_array to keep track of
the fortran handles of communicators.
This commit also fixes a bug in ompi_comm_idup where the newcomm was not
set until after the operation completed.
cmr=v1.7.4:reviewer=jsquyres:ticket=trac:3796
This commit was SVN r29342.
The following Trac tickets were found above:
Ticket 3796 --> https://svn.open-mpi.org/trac/ompi/ticket/3796
MPI_Comm_idup.
As part of this work I implemented a basic request scheduler in
ompi/comm/comm_request.c. This scheduler might be useful for more
than just communicator requests and could be moved to ompi/request
if there is a demand. Otherwise I will leave it where it is.
Added a non-blocking version of ompi_comm_set to support ompi_comm_idup.
The call makes a recursive call to comm_dup and a non-blocking version
was needed. To simplify the code the blocking version calls the nonblocking
version and waits on the resulting request if one exists.
cmr=v1.7.4:reviewer=jsquyres:ticket=trac:3796
This commit was SVN r29334.
The following Trac tickets were found above:
Ticket 3796 --> https://svn.open-mpi.org/trac/ompi/ticket/3796
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
Notes:
- This commit also eliminates the need for an available components list in use
in several frameworks. None of the code in question was making use of the
priority field of the priority component list item so these extra lists were
removed.
- Cleaned up selection code in several frameworks to sort lists using opal_list_sort.
- Cleans up the ompi/orte-info functions. Expose the functions that construct the
list of params so they can be used elsewhere.
patches for mtl/portals4 from brian
missed a few output variables in openib
This commit was SVN r28241.
Features:
- Support for an override parameter file (openmpi-mca-param-override.conf).
Variable values in this file can not be overridden by any file or environment
value.
- Support for boolean, unsigned, and unsigned long long variables.
- Support for true/false values.
- Support for enumerations on integer variables.
- Support for MPIT scope, verbosity, and binding.
- Support for command line source.
- Support for setting variable source via the environment using
OMPI_MCA_SOURCE_<var name>=source (either command or file:filename)
- Cleaner API.
- Support for variable groups (equivalent to MPIT categories).
Notes:
- Variables must be created with a backing store (char **, int *, or bool *)
that must live at least as long as the variable.
- Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of
mca_base_var_set_value() to change the value.
- String values are duplicated when the variable is registered. It is up to
the caller to free the original value if necessary. The new value will be
freed by the mca_base_var system and must not be freed by the user.
- Variables with constant scope may not be settable.
- Variable groups (and all associated variables) are deregistered when the
component is closed or the component repository item is freed. This
prevents a segmentation fault from accessing a variable after its component
is unloaded.
- After some discussion we decided we should remove the automatic registration
of component priority variables. Few component actually made use of this
feature.
- The enumerator interface was updated to be general enough to handle
future uses of the interface.
- The code to generate ompi_info output has been moved into the MCA variable
system. See mca_base_var_dump().
opal: update core and components to mca_base_var system
orte: update core and components to mca_base_var system
ompi: update core and components to mca_base_var system
This commit also modifies the rmaps framework. The following variables were
moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode,
rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables.
This commit was SVN r28236.
ompi_show_help, because opal_show_help is replaced with an
aggregating version when using ORTE, so there's no reason to
directly call orte_show_help.
This commit was SVN r28051.
* Remove paffinity, maffinity, and carto frameworks -- they've been
wholly replaced by hwloc.
* Move ompi_mpi_init() affinity-setting/checking code down to ORTE.
* Update sm, smcuda, wv, and openib components to no longer use carto.
Instead, use hwloc data. There are still optimizations possible in
the sm/smcuda BTLs (i.e., making multiple mpools). Also, the old
carto-based code found out how many NUMA nodes were ''available''
-- not how many were used ''in this job''. The new hwloc-using
code computes the same value -- it was not updated to calculate how
many NUMA nodes are used ''by this job.''
* Note that I cannot compile the smcuda and wv BTLs -- I ''think''
they're right, but they need to be verified by their owners.
* The openib component now does a bunch of stuff to figure out where
"near" OpenFabrics devices are. '''THIS IS A CHANGE IN DEFAULT
BEHAVIOR!!''' and still needs to be verified by OpenFabrics vendors
(I do not have a NUMA machine with an OpenFabrics device that is a
non-uniform distance from multiple different NUMA nodes).
* Completely rewrite the OMPI_Affinity_str() routine from the
"affinity" mpiext extension. This extension now understands
hyperthreads; the output format of it has changed a bit to reflect
this new information.
* Bunches of minor changes around the code base to update names/types
from maffinity/paffinity-based names to hwloc-based names.
* Add some helper functions into the hwloc base, mainly having to do
with the fact that we have the hwloc data reporting ''all''
topology information, but sometimes you really only want the
(online | available) data.
This commit was SVN r26391.
Roll in the ORTE state machine. Remove last traces of opal_sos. Remove UTK epoch code.
Please see the various emails about the state machine change for details. I'll send something out later with more info on the new arch.
This commit was SVN r26242.
supposed to. I.e., half-baked/not complete stuff.
This commit backs out all of r25545. Sorry folks!
This commit was SVN r25546.
The following SVN revision numbers were found above:
r25545 --> open-mpi/ompi@7f9ae11faf
to make MPI_IN_PLACE (and other sentinel Fortran constants) work on OS
X, we need to use the following compiler (linker) flag:
-Wl,-commons,use_dylibs
So if we're compiling on OS X, test to see if that flag works with the
compiler. If so, add it to the wrapper FFLAGS and FCFLAGS (note that
per a future update, we'll only have one Fortran compiler anyway).
Fixes trac:1982.
This commit was SVN r25545.
The following Trac tickets were found above:
Ticket 1982 --> https://svn.open-mpi.org/trac/ompi/ticket/1982
After talking with Brian, we're pretty sure that this is only because
really, really old libevent didn't allow bitwise or-ing of the other
loop types, because what we really need is (EVLOOP_ONCE |
EVLOOP_NONBLOCK). And that's what EVLOOP_ONELOOP did (i.e., we
changed the logic of libevent's event.c to let ONELOOP do both ONCE
and NONBLOCK things).
In the new libevent version, we didn't implement EVLOOP_ONELOOP
properly. As a result, and we got hangs in the SM BTL add_procs
function. Note that the SM BTL wasn't to blame -- it was purely a
side-effect of bad ONELOOP integration (i.e., if you got past the SM
BTL add_procs, you may well have hung somewhere else).
This commit removes all ONELOOP customizations from event.c and
returns it to (almost) its original state from the libevent 2.0.7-rc
distribution. Everwhere in the code base where we used ONELOOP, we
now use (ONCE | NONBLOCK).
This commit was SVN r23957.
This is a fairly intrusive change, but outside of the moving of opal/event to opal/mca/event, the only changes involved (a) changing all calls to opal_event functions to reflect the new framework instead, and (b) ensuring that all opal_event_t objects are properly constructed since they are now true opal_objects.
Note: Shiqing has just returned from vacation and has not yet had a chance to complete the Windows integration. Thus, this commit almost certainly breaks Windows support on the trunk. However, I want this to have a chance to soak for as long as possible before I become less available a week from today (going to be at a class for 5 days, and thus will only be sparingly available) so we can find and fix any problems.
Biggest change is moving the libevent code from opal/event to a new opal/mca/event framework. This was done to make it much easier to update libevent in the future. New versions can be inserted as a new component and tested in parallel with the current version until validated, then we can remove the earlier version if we so choose. This is a statically built framework ala installdirs, so only one component will build at a time. There is no selection logic - the sole compiled component simply loads its function pointers into the opal_event struct.
I have gone thru the code base and converted all the libevent calls I could find. However, I cannot compile nor test every environment. It is therefore quite likely that errors remain in the system. Please keep an eye open for two things:
1. compile-time errors: these will be obvious as calls to the old functions (e.g., opal_evtimer_new) must be replaced by the new framework APIs (e.g., opal_event.evtimer_new)
2. run-time errors: these will likely show up as segfaults due to missing constructors on opal_event_t objects. It appears that it became a typical practice for people to "init" an opal_event_t by simply using memset to zero it out. This will no longer work - you must either OBJ_NEW or OBJ_CONSTRUCT an opal_event_t. I tried to catch these cases, but may have missed some. Believe me, you'll know when you hit it.
There is also the issue of the new libevent "no recursion" behavior. As I described on a recent email, we will have to discuss this and figure out what, if anything, we need to do.
This commit was SVN r23925.
MPI_INIT and start of MPI_FINALIZE.
* Clean up MPI Extensions build system to acknowledge that OMPI's the only
project with extensions, as well as remove some build artifacts necessary
for more general components.
This commit was SVN r23616.
Many of the OPAL_ENABLE_FT should be OPAL_ENABLE_FT_CR, so fix those.
The OPAL Layer INC should call opal_output on restart so that it can refresh the string it prints to reflect the current pid/hostname which may have changed.
This commit was SVN r22824.
1. replacing mpi_paffinity_alone with opal_paffinity_alone - for back-compatibility, I have aliased mpi_paffinity_alone to the new param name. This caus
es a mild abstraction break in the opal/mca/paffinity framework - per the devel discussion...live with it. :-) I also moved the ompi_xxx global variable
that tracked maffinity setup so it could be properly closed in MPI_Finalize to the opal/mca/maffinity framework to avoid an abstraction break.
2. Added code to the odls/default module to perform paffinity binding and maffinity init between process fork and exec. This has been tested on IU's odi
n cluster and works for both MPI and non-MPI apps.
3. Revise MPI_Init to detect if affinity has already been set, and to attempt to set it if not already done. I have *not* tested this as I haven't yet f
igured out a way to do so - I couldn't get slurm to perform cpu bindings, even though it supposedly does do so.
This has only been lightly tested and would definitely benefit from a wider range of evaluation...
This commit was SVN r21209.
OMPI_* to OPAL_*. This allows opal layer to be used more independent
from the whole of ompi.
NOTE: 9 "svn mv" operations immediately follow this commit.
This commit was SVN r21180.
- Delete unnecessary header files using
contrib/check_unnecessary_headers.sh after applying
patches, that include headers, being "lost" due to
inclusion in one of the now deleted headers...
In total 817 files are touched.
In ompi/mpi/c/ header files are moved up into the actual c-file,
where necessary (these are the only additional #include),
otherwise it is only deletions of #include (apart from the above
additions required due to notifier...)
- To get different MCAs (OpenIB, TM, ALPS), an earlier version was
successfully compiled (yesterday) on:
Linux locally using intel-11, gcc-4.3.2 and gcc-SVN + warnings enabled
Smoky cluster (x86-64 running Linux) using PGI-8.0.2 + warnings enabled
Lens cluster (x86-64 running Linux) using Pathscale-3.2 + warnings enabled
This commit was SVN r21096.