did pre-libevent update. The problem is that the behavior of
OPAL_EVLOOP_ONCE was changed by the OMPI team, which them broke things
during the update, so it had to be reverted to the old meaning of
loop until one event occurs. OPAL_EVLOOP_ONELOOP will go through the
event loop once (like EVLOOP_NONBLOCK) but will pause in the event
library for a bit (like EVLOOP_ONCE).
fixes trac:234
This commit was SVN r11081.
The following Trac tickets were found above:
Ticket 234 --> https://svn.open-mpi.org/trac/ompi/ticket/234
users mailing list:
http://www.open-mpi.org/community/lists/users/2006/07/1680.php
Warning: this log message is not for the weak. Read at your own
risk.
The problem was that we had several variables in Fortran common blocks
of various types, but their C counterparts were all of a type
equivalent to a fortran double complex. This didn't seem to matter
for the compilers that we tested, but we never tested static builds
(which is where this problem seems to occur, at least with the Intel
compiler: the linker compilains that the variable in the common block
in the user's .o file was of one size/alignment but the one in the C
library was a different size/alignment).
So this patch fixes the sizes/types of the Fortran common block
variables and their corresponding C instantiations to be of the same
sizes/types.
But wait, there's more.
We recently introduced a fix for the OSX linker where some C versions
of the fortran common block variables (e.g.,
_ompi_fortran_status_ignore) were not being found when linking
ompi_info (!). Further research shows that the code path for
ompi_info to require ompi_fortran_status_ignore is, unfortunately,
necessary (a quirk of how various components pull in different
portions of the code base -- nothing in ompi_info itself requires
fortran or MPI knowledge, of course).
Hence, the real problem was that there was no code path from ompi_info
to the portion of the code base where the C globals corresponding to
the Fortran common block variables were instantiated. This is because
the OSX linker does not automatically pull in .o files that only
contain unintialized global variables; the OSX linker typically only
pulls in a .o file from a library if it either has a function that is
used or have a global variable that is initialized (that's the short
version; lots of details and corner cases omitted). Hence, we changed
the global C variables corresponding to the fortran common blocks to
be initialized, thereby causing the OSX linker to pull them in
automatically -- problem solved. At the same time, we moved the
constants to another .c file with a function, just for good measure.
However, this didn't really solve the problem:
1. The function in the file with the C versions of the fortran common
block variables (ompi/mpi/f77/test_constants_f.c) did not have a
code path that was reachable from ompi_info, so the only reason
that the constants were found (on OSX) was because they were
initialized in the global scope (i.e., causing the OSX compiler to
pull in that .o file).
2. Initializing these variable in the global scope causes problems for
some linkers where -- once all the size/type problems mentioned
above were fixed -- the alignments of fortran common blocks and C
global variables do not match (even though the types of the Fortran
and C variables match -- wow!). Hence, initializing the C
variables would not necessarily match the alignment of what Fortran
expected, and the linker would issue a warning (i.e., the alignment
warnings referenced in the original post).
The solution is two-fold:
1. Move the Fortran variables from test_constants_f.c to
ompi/mpi/runtime/ompi_mpi_init.c where there are other global
constants that *are* initialized (that had nothing to do with
fortran, so the alignment issues described above are not a factor),
and therefore all linkers (including the OSX linker) will pull in
this .o file and find all the symbols that it needs.
2. Do not initialize the C variables corresponding to the Fortran
common blocks in the global scope. Indeed, never initialize them
at all (because we never need their *values* - we only check for
their *locations*). Since nothing is ever written to these
variables (particularly in the global scope), the linker does not
see any alignment differences during initialization, but does make
both the C and Fortran variables have the same addresses (this
method has been working in LAM/MPI for over a decade).
There were some comments here in the OMPI code base and in the LAM
code base that stated/implied that C variables corresponding to
Fortran common blocks had to have the same alignment as the Fortran
common blocks (i.e., 16). There were attempts in both code bases to
ensure that this was true. However, the attempts were wrong (in both
code bases), and I have now read enough Fortran compiler documentation
to convince myself that matching alignments is not required (indeed,
it's beyond our control). As long as C variables corresponding to
Fortran common blocks are not initialized in the global scope, the
linker will "figure it out" and adjust the alignment to whatever is
required (i.e., the greater of the alignments). Specifically (to
counter comments that no longer exist in the OMPI code base but still
exist in the LAM code base):
- there is no need to make attempts to specially align C variables
corresponding to Fortran common blocks
- the types and sizes of C variables corresponding to Fortran common
blocks should match, but do not need to be on any particular
alignment
Finally, as a side effect of this effort, I found a bunch of
inconsistencies with the intent of status/array_of_statuses
parameters. For all the functions that I modified they should be
"out" (not inout).
This commit was SVN r11057.
of send/receives outstanding.
Use ibv_cq_resize if available after initial creation of completion queue if
cq_size is too small (based on number of peers).
This commit was SVN r11053.
make it consistent with the indenting in the rest of the file
(otherwise it was quite difficult to understand -- saw this while I
was reviewing 11039).
This commit was SVN r11042.
object if provided.
The associated value is a comma-separated list of hosts -- which must be
in the initial allocation -- and is used to populate the application
context map.
This commit was SVN r11039.
libevent-1.1a.
svn merge -r10917:11006 https://svn.open-mpi.org/svn/ompi/tmp/libevent-update
This commit was SVN r11022.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r10917
r11006
Reviewed by: Jeff Squyres
Fix for ticket #220. Missing a few C++ methods.
MPI::Datatype::Create_indexed_block
MPI::Datatype::Create_resize
MPI::Datatype::Get_true_extent
This commit was SVN r11010.
functions MPI_Test, MPI_Testany, MPI_Wait, MPI_Waitany
should not reset the status.MPI_ERROR as passed by user.
- This needed implementing the MPI_Waitsome and MPI_Testsome.
This commit was SVN r10980.
- bsend_init: use *request after error-checking
- Always reset the status->cancelled
- cancel, wait: need to check *request for MPI_REQUEST_NULL, not
NULL...
(actually ompi_request_wait handles MPI_PROC_NULL, so no need
to check&set of status_empty in wait.c)
This commit was SVN r10972.
- ensure to initialize the values that we use for fortran constants
(even tough their *values* don't matter -- only their *addresses* do,
but initializing them or not has implications for the OSX linker)
- move the fortran constants to a file with functions in it, because
the OSX linker sometimes does not import global variables from
object files that do not have functions (I'm not even going to
pretend to get all the subtle details about the OSX linker right
here -- it's just "better" to have global variables in object files
with functions that otherwise get pulled in during linker
resolution).
This commit was SVN r10908.
SPAWN[_MULTIPLE] from a singleton (and displays a pretty help message
explaining that you need to use mpirun). This can be removed when
fixes for ORTE come over that allow SPAWN[_MULTIPLE] from singletons.
This commit was SVN r10898.
shared memory segments
* make sure to properly unlink the collectives sm bootstrap area at
shutdown
* Add missing / in the path for the mpool shared memory segment
* make sure to release the common_mmap structure in the SM btl
after unlinking the file during shutdown
This commit was SVN r10886.
MPI_WAIT, MPI_TEST, MPI_WAITANY, and MPI_TESTANY. It isn't really
clear what the standard wants as the return code for these functions,
and this is what Sun MPI, LAM/MPI, and MPICH2 all do.
Fixes trac:172
This commit was SVN r10872.
The following Trac tickets were found above:
Ticket 172 --> https://svn.open-mpi.org/trac/ompi/ticket/172
final datatype not on the shape of the added datatype. The gaps exist if the
extent of the final datatype is not equal to its size.
This commit was SVN r10867.
than $(LN_S). This causes problems with with Windows and probably
elsewhere (re: #200). So use a slightly different trick to get the
right header selected for the MEMCPY and TIMER components.
* Using the same trick used to solve the AC_CONFIG_LINKS problem,
stop using a separate header file for direct calling in the
PML and MTL. This lets me remove some icky code in ompi_mca.m4
that was more fragile than I really liked.
This commit was SVN r10841.
We now set truncation error if we received more than we delivered for both
the OB1 and DR PMLs (the CM PML doesn't need such a fix, as the condition
is set at the MTL level)
This commit was SVN r10812.
The following Trac tickets were found above:
Ticket 172 --> https://svn.open-mpi.org/trac/ompi/ticket/172
all but buffered and persistent requests. Unfortunately we were note able to
reuse the pml_base_request_t as it was just too heavy for our needs. Lots of
code for 2/10 usec ;-)
This commit was SVN r10810.