Roll in the ORTE state machine. Remove last traces of opal_sos. Remove UTK epoch code.
Please see the various emails about the state machine change for details. I'll send something out later with more info on the new arch.
This commit was SVN r26242.
Uses new CUDA IPC support. Also, a few minor changes in PML to take
advantage of it.
This code has no effect unless user asks for it explicitly via
configure arguments. Otherwise, it is either #ifdef'ed out or
not compiled.
This commit was SVN r26039.
No need for any CMRs to 1.5... that was already done in CMR 2728.
This commit was SVN r24545.
The following SVN revision numbers were found above:
r22841 --> open-mpi/ompi@b400b84162
step is the configure and Fortran mojo that Jeff will put in. Until then I
guess the Fortran interface is broken (at least all functions using the hidden
count firld in the MPI_Status).
This commit was SVN r23467.
(OMPI_ERR_* = OPAL_SOS_GET_ERR_CODE(ret)), since the return value could be a
SOS-encoded error. The OPAL_SOS_GET_ERR_CODE() takes in a SOS error and returns
back the native error code.
* Since OPAL_SUCCESS is preserved by SOS, also change all calls of the form
(OPAL_ERROR == ret) to (OPAL_SUCCESS != ret). We thus avoid having to
decode 'ret' to get the native error code.
This commit was SVN r23162.
OMPI
and a language agnostic part in OPAL. The convertor is completely
moved into OPAL. This offers several benefits as described in RFC
http://www.open-mpi.org/community/lists/devel/2009/07/6387.php
namely:
- Fewer basic types (int* and float* types, boolean and wchar
- Fixing naming scheme to ompi-nomenclature.
- Usability outside of the ompi-layer.
- Due to the fixed nature of simple opal types, their information is
completely
known at compile time and therefore constified
- With fewer datatypes (22), the actual sizes of bit-field types may be
reduced
from 64 to 32 bits, allowing reorganizing the opal_datatype
structure, eliminating holes and keeping data required in convertor
(upon send/recv) in one cacheline...
This has implications to the convertor-datastructure and other parts
of the code.
- Several performance tests have been run, the netpipe latency does not
change with
this patch on Linux/x86-64 on the smoky cluster.
- Extensive tests have been done to verify correctness (no new
regressions) using:
1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and
ompi-ddt:
a. running both trunk and ompi-ddt resulted in no differences
(except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run
correctly).
b. with --enable-memchecker and running under valgrind (one buglet
when run with static found in test-suite, commited)
2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt:
all passed (except for the dynamic/ tests failed!! as trunk/MTT)
3. compilation and usage of HDF5 tests on Jaguar using PGI and
PathScale compilers.
4. compilation and usage on Scicortex.
- Please note, that for the heterogeneous case, (-m32 compiled
binaries/ompi), neither
ompi-trunk, nor ompi-ddt branch would successfully launch.
This commit was SVN r21641.
got a whole lot smaller, decreasing the memory footprint of the
running application. How much it's a good question. Here is a
breakdown:
- in mca_bml_base_endpoint_t: 3 *size_t + 1 * uint32_t
- in mca_bml_base_btl_t: 1 * int + 1 * double - 1 * float
+ 6 * size_t + 9 * (void*)
The decrease in mca_bml_base_endpoint_t is for each peer and the
decrease in mca_bml_base_btl_t is for each BTL for each peer.
So, if we consider the most convenient case where there is only
one network between all peers, this decrease the memory foot print
per peer by
9*size_t + 9*(void*) + 2 * int32_t + 1 * double - 1 * float.
On a 64 bits machine this will be 156 bytes per peer.
Now we access all these fields directly from the underlying BTL
structure, and as this structure is common to multiple BML endpoint,
we are a lot more cache friendly. Even if this do not improve the
latency, it makes the SM performance graph a lot smoother.
This commit was SVN r19659.
There was an argument that was barely used, and on return at the PML
level it contained nothing usable. It has been removed, so now we're
using less memory ...
This commit was SVN r19657.
1. The send path get shorter. The BTL is allowed to return > 0 to specify that the
descriptor was pushed to the networks, and that the memory attached to it is
available again for the upper layer. The MCA_BTL_DES_SEND_ALWAYS_CALLBACK flag
can be used by the PML to force the BTL to always trigger the callback.
Unmodified BTL will continue to work as expected, as they will return OMPI_SUCCESS
which force the PML to have exactly the same behavior as before. Some BTLs have
been modified: self, sm, tcp, mx.
2. Add send immediate interface to BTL.
The idea is to have a mechanism of allowing the BTL to take advantage of
send optimizations such as the ability to deliver data "inline". Some
network APIs such as Portals allow data to be sent using a "thin" event
without packing data into a memory descriptor. This interface change
allows the BTL to use such capabilities and allows for other optimizations
in the future. All existing BTLs except for Portals and sm have this interface
set to NULL.
This commit was SVN r18551.
start sending fragment by copy in/out before ACK is received as we don't
know pointer to receive request yet.
Pipeline protocol sometimes doesn't send ACK though, so this case is still
broken.
This commit was SVN r18423.
no more work associated with this request. No more outstanding completions or
packets and send scheduling isn't running in another thread.
This commit was SVN r16013.
have to construct/destruct only once. Therefore, the construction will
happens before digging for a PML, while the destruction just before
finalizing the component.
Add some OPAL_LIKELY/OPAL_UNLIKELY.
This commit was SVN r15347.
receive queues are shared among all PMLs, they are declared in the base PML,
and the selected PML is in charge of initializing and releasing them.
The CM PML is slightly different compared with OB1 or DR. Internally it use
2 different types of requests: light and heavy. However, now with this patch
both types of requests are stored in the same queue, and cast appropriately
on the allocation macro. This means we might use less memory than we allocate,
but in exchange we got full support for most of the parallel debuggers.
Another thing with this patch, is that now for all PML (CM included) the basic
PML requests start with the same fields, and they are declared in the same order
in the request structure. Moreover, the fields have been moved in such a way
that only one volatile/atomic will exist per line of cache (hopefully).
This commit was SVN r15346.
relative bandwidths of each BTL. Precalculate what part of a message should
be send via each BTL in advance instead of doing it during scheduling.
This commit was SVN r15248.
each BTL. Precalculate what part of a message should be send via each BTL in
advance instead of doing it during scheduling.
This commit was SVN r15247.
that allows to send any range of a request by send/recv instaed of RDMA
and use it to send data from the end of a request in pipeline protocol.
This commit was SVN r14841.
computation of the current location on the pack/unpack process. This can
be used both for retrieving the pointer to the first byte (in the special
case of the cached RDMA protocol) and for getting the current
position (for the pipelined protocol).
I modified all BTLs, but most of them are still untested.
This commit was SVN r14180.
udapl/openib/vapi/gm mpools a deprecated. rdma mpool has parameter that allows
to limit its size mpool_rdma_rcache_size_limit (default is 0 - unlimited).
This commit was SVN r12878.
all platforms. The only exceptions (and I will not deal with them
anytime soon) are on Windows:
- the write functions which require the length to be an int when it's
a size_t on all UNIX variants.
- all iovec manipulation functions where the iov_len is again an int
when it's a size_t on most of the UNIXes.
As these only happens on Windows, so I think we're set for now :)
This commit was SVN r12215.