* don't pass --tree-spawn to the orted cmd line. If someone doesn't want tree-spawn, it shows up as an MCA param anyway
* ensure state/orted component disqualifies itself from CM operations
* clarify the DVM proc_type definitions
* ensure we stop littering the tmp dir with session directories
This commit does two things. It removes checks for C99 required
headers (stdlib.h, string.h, signal.h, etc). Additionally it removes
definitions for required C99 types (intptr_t, int64_t, int32_t, etc).
Signed-off-by: Nathan Hjelm <hjelmn@me.com>
Changing the client to leave its socket as blocking during the connect doesn't solve the problem by itself - you also have to introduce a sleep delay once the backlog is hit to avoid simply machine-gunning your way thru retries. This gets somewhat difficult to adjust as you don't want to unnecessarily prolong startup time.
We've solved this before by adding a listening thread that simply reaps accepts and shoves them into the event library for subsequent processing. This would resolve the problem, but meant yet another daemon-level thread. So I centralized the listening thread support and let multiple elements register listeners on it. Thus, each daemon now has a single listening thread that reaps accepts from multiple sources - for now, the orte/pmix server and the oob/usock support are using it. I'll add in the oob/tcp component later.
This still didn't fully resolve the SMP problem, especially on coprocessor cards (e.g., KNC). Removing the shared memory dstore support helped further improve the behavior - it looks like there is some kind of memory paging issue there that needs further understanding. Given that the shared memory support was about to be lost when I bring over the PMIx integration (until it is restored in that library), it seemed like a reasonable thing to just remove it at this point.
A few uninitialized common symbols are remaining (generated by flex) :
* orte/mca/rmaps/rank_file/rmaps_rank_file_lex.c: orte_rmaps_rank_file_leng
* orte/mca/rmaps/rank_file/rmaps_rank_file_lex.c: orte_rmaps_rank_file_text
* orte/util/hostfile/hostfile_lex.c: orte_util_hostfile_leng
* orte/util/hostfile/hostfile_lex.c: orte_util_hostfile_text
We recognize that this means other users of OPAL will need to "wrap" the opal_process_name_t if they desire to abstract it in some fashion. This is regrettable, and we are looking at possible alternatives that might mitigate that requirement. Meantime, however, we have to put the needs of the OMPI community first, and are taking this step to restore hetero and SPARC support.
These two macros set the prefix for the OPAL and ORTE libraries,
respectively. Specifically, the OPAL library will be named
libPREFIXopen-pal.la and the ORTE library will be named
libPREFIXopen-rte.la.
These macros must be called, even if the prefix argument is empty.
The intent is that Open MPI will call these macros with an empty
prefix, but other projects (such as ORCM) will call these macros with
a non-empty prefix. For example, ORCM libraries can be named
liborcm-open-pal.la and liborcm-open-rte.la.
This scheme is necessary to allow running Open MPI applications under
systems that use their own versions of ORTE and OPAL. For example,
when running MPI applications under ORTE, if the ORTE and OPAL
libraries between OMPI and ORCM are not identical (which, because they
are released at different times, are likely to be different), we need
to ensure that the OMPI applications link against their ORTE and OPAL
libraries, but the ORCM executables link against their ORTE and OPAL
libraries.
the OPAL and ORTE libraries. This is required by projects such as ORCM
that have their own ORTE and OPAL libraries in order to avoid library
confusion. By renaming their version of the libraries, the OMPI
applications can correctly dynamically load the correct one for their
build."
This reverts commit 63f619f8719fb853d76130d667f228b0a523bd60.
WHAT: Merge the PMIx branch into the devel repo, creating a new
OPAL “lmix” framework to abstract PMI support for all RTEs.
Replace the ORTE daemon-level collectives with a new PMIx
server and update the ORTE grpcomm framework to support
server-to-server collectives
WHY: We’ve had problems dealing with variations in PMI implementations,
and need to extend the existing PMI definitions to meet exascale
requirements.
WHEN: Mon, Aug 25
WHERE: https://github.com/rhc54/ompi-svn-mirror.git
Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding.
All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level.
Accordingly, we have:
* created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations.
* Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported.
* Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint
* removed the prior OMPI/OPAL modex code
* added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform.
* retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand
This commit was SVN r32570.