The primary change that underlies all this is in the OOB. Specifically, the problem in the code until now has been that the OOB attempts to resolve an address when we call the "send" to an unknown recipient. The OOB would then wait forever if that recipient never actually started (and hence, never reported back its OOB contact info). In the case of an orted that failed to start, we would correctly detect that the orted hadn't started, but then we would attempt to order all orteds (including the one that failed to start) to die. This would cause the OOB to "hang" the system.
Unfortunately, revising how the OOB resolves addresses introduced a number of additional problems. Specifically, and most troublesome, was the fact that comm_spawn involved the immediate transmission of the rendezvous point from parent-to-child after the child was spawned. The current code used the OOB address resolution as a "barrier" - basically, the parent would attempt to send the info to the child, and then "hold" there until the child's contact info had arrived (meaning the child had started) and the send could be completed.
Note that this also caused comm_spawn to "hang" the entire system if the child never started... The app-failed-to-start helped improve that behavior - this code provides additional relief.
With this change, the OOB will return an ADDRESSEE_UNKNOWN error if you attempt to send to a recipient whose contact info isn't already in the OOB's hash tables. To resolve comm_spawn issues, we also now force the cross-sharing of connection info between parent and child jobs during spawn.
Finally, to aid in setting triggers to the right values, we introduce the "arith" API for the GPR. This function allows you to atomically change the value in a registry location (either divide, multiply, add, or subtract) by the provided operand. It is equivalent to first fetching the value using a "get", then modifying it, and then putting the result back into the registry via a "put".
This commit was SVN r14711.
Accordingly, there are new APIs to the name service to support the ability to get a job's parent, root, immediate children, and all its descendants. In addition, the terminate_job, terminate_orted, and signal_job APIs for the PLS have been modified to accept attributes that define the extent of their actions. For example, doing a "terminate_job" with an attribute of ORTE_NS_INCLUDE_DESCENDANTS will terminate the given jobid AND all jobs that descended from it.
I have tested this capability on a MacBook under rsh, Odin under SLURM, and LANL's Flash (bproc). It worked successfully on non-MPI jobs (both simple and including a spawn), and MPI jobs (again, both simple and with a spawn).
This commit was SVN r12597.
Add some debugging output to the ODLS default module, and the orted.
Remove the nodename data from the ODLS info report - that info is already stored in the registry by the RMAPS framework upon completing the mapping procedure.
Add another test program that does an ORTE-only dynamic spawn (gasp!). Looks just like comm_spawn - just no MPI involved.
Modify the ODLS to release the processor when we "kill" local procs in a more scalable fashion. It previously had a sleep in it that Jeff's prior commit removed. However, he introduced some Windows code into the non-Windows component (protected by "if"s, but unnecessary). This is a more general solution he proposed - included here so I could get things to compile properly.
This commit was SVN r12579.
Fix the problem observed by multiple people that comm_spawned children were (once again) being mapped onto the same nodes as their parents. This was caused by going through the RAS a second time, thus overwriting the mapper's bookkeeping that told RMAPS where it had left off.
To solve this - and to continue moving forward on the ORTE development - we introduce the concept of attributes to control the behavior of the RM frameworks. I defined the attributes and a list of attributes as new ORTE data types to make it easier for people to pass them around (since they are now fundamental to the system, and therefore we will be packing and unpacking them frequently). Thus, all the functions to manipulate attributes can be implemented and debugged in one place.
I used those capabilities in two places:
1. Added an attribute list to the rmgr.spawn interface.
2. Added an attribute list to the ras.allocate interface. At the moment, the only attribute I modified the various RAS components to recognize is the USE_PARENT_ALLOCATION one (as defined in rmgr_types.h).
So the RAS components now know how to reuse an allocation. I have debugged this under rsh, but it now needs to be tested on a wider set of platforms.
This commit was SVN r12138.
We still have an issue with the io forwarding going through the spawning process, but that will be dealt with at a future time.
This commit was SVN r11943.