Thanks to George and Jeff for pointing out a better way to do this.
This commit was SVN r19573.
The following SVN revision numbers were found above:
r19566 --> open-mpi/ompi@351c3a3a86
that by decreasing the btl_inuse if there was already a registered BTL we basically reset
the changes for this new BTL to register it's progress function, even if it was supposed to
handle another peer.
This commit was SVN r19080.
* add "register" function to mca_base_component_t
* converted coll:basic and paffinity:linux and paffinity:solaris to
use this function
* we'll convert the rest over time (I'll file a ticket once all
this is committed)
* add 32 bytes of "reserved" space to the end of mca_base_component_t
and mca_base_component_data_2_0_0_t to make future upgrades
[slightly] easier
* new mca_base_component_t size: 196 bytes
* new mca_base_component_data_2_0_0_t size: 36 bytes
* MCA base version bumped to v2.0
* '''We now refuse to load components that are not MCA v2.0.x'''
* all MCA frameworks versions bumped to v2.0
* be a little more explicit about version numbers in the MCA base
* add big comment in mca.h about versioning philosophy
This commit was SVN r19073.
The following Trac tickets were found above:
Ticket 1392 --> https://svn.open-mpi.org/trac/ompi/ticket/1392
a little bit more than "BTL was able to add some procs". The real condition to
allow the BTL progress is that we will use it to send/recv data to/from some
of the peers (this include the BTL exclusivity in the process).
This commit was SVN r19010.
After much work by Jeff and myself, and quite a lot of discussion, it has become clear that we simply cannot resolve the infinite loops caused by RML-involved subsystems calling orte_output. The original rationale for the change to orte_output has also been reduced by shifting the output of XML-formatted vs human readable messages to an alternative approach.
I have globally replaced the orte_output/ORTE_OUTPUT calls in the code base, as well as the corresponding .h file name. I have test compiled and run this on the various environments within my reach, so hopefully this will prove minimally disruptive.
This commit was SVN r18619.
1. The send path get shorter. The BTL is allowed to return > 0 to specify that the
descriptor was pushed to the networks, and that the memory attached to it is
available again for the upper layer. The MCA_BTL_DES_SEND_ALWAYS_CALLBACK flag
can be used by the PML to force the BTL to always trigger the callback.
Unmodified BTL will continue to work as expected, as they will return OMPI_SUCCESS
which force the PML to have exactly the same behavior as before. Some BTLs have
been modified: self, sm, tcp, mx.
2. Add send immediate interface to BTL.
The idea is to have a mechanism of allowing the BTL to take advantage of
send optimizations such as the ability to deliver data "inline". Some
network APIs such as Portals allow data to be sent using a "thin" event
without packing data into a memory descriptor. This interface change
allows the BTL to use such capabilities and allows for other optimizations
in the future. All existing BTLs except for Portals and sm have this interface
set to NULL.
This commit was SVN r18551.
such, the commit message back to the master SVN repository is fairly
long.
= ORTE Job-Level Output Messages =
Add two new interfaces that should be used for all new code throughout
the ORTE and OMPI layers (we already make the search-and-replace on
the existing ORTE / OMPI layers):
* orte_output(): (and corresponding friends ORTE_OUTPUT,
orte_output_verbose, etc.) This function sends the output directly
to the HNP for processing as part of a job-specific output
channel. It supports all the same outputs as opal_output()
(syslog, file, stdout, stderr), but for stdout/stderr, the output
is sent to the HNP for processing and output. More on this below.
* orte_show_help(): This function is a drop-in-replacement for
opal_show_help(), with two differences in functionality:
1. the rendered text help message output is sent to the HNP for
display (rather than outputting directly into the process' stderr
stream)
1. the HNP detects duplicate help messages and does not display them
(so that you don't see the same error message N times, once from
each of your N MPI processes); instead, it counts "new" instances
of the help message and displays a message every ~5 seconds when
there are new ones ("I got X new copies of the help message...")
opal_show_help and opal_output still exist, but they only output in
the current process. The intent for the new orte_* functions is that
they can apply job-level intelligence to the output. As such, we
recommend that all new ORTE and OMPI code use the new orte_*
functions, not thei opal_* functions.
=== New code ===
For ORTE and OMPI programmers, here's what you need to do differently
in new code:
* Do not include opal/util/show_help.h or opal/util/output.h.
Instead, include orte/util/output.h (this one header file has
declarations for both the orte_output() series of functions and
orte_show_help()).
* Effectively s/opal_output/orte_output/gi throughout your code.
Note that orte_output_open() takes a slightly different argument
list (as a way to pass data to the filtering stream -- see below),
so you if explicitly call opal_output_open(), you'll need to
slightly adapt to the new signature of orte_output_open().
* Literally s/opal_show_help/orte_show_help/. The function signature
is identical.
=== Notes ===
* orte_output'ing to stream 0 will do similar to what
opal_output'ing did, so leaving a hard-coded "0" as the first
argument is safe.
* For systems that do not use ORTE's RML or the HNP, the effect of
orte_output_* and orte_show_help will be identical to their opal
counterparts (the additional information passed to
orte_output_open() will be lost!). Indeed, the orte_* functions
simply become trivial wrappers to their opal_* counterparts. Note
that we have not tested this; the code is simple but it is quite
possible that we mucked something up.
= Filter Framework =
Messages sent view the new orte_* functions described above and
messages output via the IOF on the HNP will now optionally be passed
through a new "filter" framework before being output to
stdout/stderr. The "filter" OPAL MCA framework is intended to allow
preprocessing to messages before they are sent to their final
destinations. The first component that was written in the filter
framework was to create an XML stream, segregating all the messages
into different XML tags, etc. This will allow 3rd party tools to read
the stdout/stderr from the HNP and be able to know exactly what each
text message is (e.g., a help message, another OMPI infrastructure
message, stdout from the user process, stderr from the user process,
etc.).
Filtering is not active by default. Filter components must be
specifically requested, such as:
{{{
$ mpirun --mca filter xml ...
}}}
There can only be one filter component active.
= New MCA Parameters =
The new functionality described above introduces two new MCA
parameters:
* '''orte_base_help_aggregate''': Defaults to 1 (true), meaning that
help messages will be aggregated, as described above. If set to 0,
all help messages will be displayed, even if they are duplicates
(i.e., the original behavior).
* '''orte_base_show_output_recursions''': An MCA parameter to help
debug one of the known issues, described below. It is likely that
this MCA parameter will disappear before v1.3 final.
= Known Issues =
* The XML filter component is not complete. The current output from
this component is preliminary and not real XML. A bit more work
needs to be done to configure.m4 search for an appropriate XML
library/link it in/use it at run time.
* There are possible recursion loops in the orte_output() and
orte_show_help() functions -- e.g., if RML send calls orte_output()
or orte_show_help(). We have some ideas how to fix these, but
figured that it was ok to commit before feature freeze with known
issues. The code currently contains sub-optimal workarounds so
that this will not be a problem, but it would be good to actually
solve the problem rather than have hackish workarounds before v1.3 final.
This commit was SVN r18434.
* Remove the opal_only option. This was suffering from bit rot, and no one uses it. It can be added back fairly easily if wanted.
* Cleanup metadata interactions at the local level.
* Touch up some of the INC funcitonality (fix typos and a minor ordering issue)
This commit was SVN r18416.
The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge.
The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit.
Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it.
* Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level.
* Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components.
* Update ft_event functions in PML and BML to handle the new restart state.
* Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging.
This commit was SVN r18276.
without calling a get or put. So, just keep it here until a better solution is
found.
This commit was SVN r17872.
The following SVN revision numbers were found above:
r17857 --> open-mpi/ompi@d460ccfbf9
Also, update some properties (source files should not be executeable...), and remove a couple unneeded inclusions of orte_proc_table.h
This commit was SVN r17655.
- the registration array is now global instead of one by BTL.
- each framework have to declare the entries in the registration array reserved. Then
it have to define the internal way of sharing (or not) these entries between all
components. As an example, the PML will not share as there is only one active PML
at any moment, while the BTLs will have to. The tag is 8 bits long, the first 3
are reserved for the framework while the remaining 5 are use internally by each
framework.
- The registration function is optional. If a BTL do not provide such function,
nothing happens. However, in the case where such function is provided in the BTL
structure, it will be called by the BML, when a tag is registered.
Now, it's time for the second step... Converting OB1 from a switch based PML to an
active message one.
This commit was SVN r17140.
for dynamic selection of cpc methods based on what is available. It
also allows for inclusion/exclusions of methods. It even futher allows
for modifying the priorities of certain cpc methods to better determine
the optimal cpc method.
This patch also contains XRC compile time disablement (per Jeff's
patch).
At a high level, the cpc selections works by walking through each cpc
and allowing it to test to see if it is permissable to run on this
mpirun. It returns a priority if it is permissable or a -1 if not. All
of the cpc names and priorities are rolled into a string. This string
is then encapsulated in a message and passed around all the ompi
processes. Once received and unpacked, the list received is compared
to a local copy of the list. The connection method is chosen by
comparing the lists passed around to all nodes via modex with the list
generated locally. Any non-negative number is a potentially valid
connection method. The method below of determining the optimal
connection method is to take the cross-section of the two lists. The
highest single value (and the other side being non-negative) is selected
as the cpc method.
svn merge -r 16948:17128 https://svn.open-mpi.org/svn/ompi/tmp-public/openib-cpc/ .
This commit was SVN r17138.
about linkers, have all OPAL, ORTE, and OMPI components '''not'' link
against the OPAL, ORTE, or OMPI libraries.
See ttp://www.open-mpi.org/community/lists/users/2007/10/4220.php for
details (or https://svn.open-mpi.org/trac/ompi/wiki/Linkers for a
better-formatted version of the same info).
This commit was SVN r16968.
the ompi_convertor_need_buffers function to only return 0 if the convertor
is homogeneous (which it never does on the trunk, but does to on v1.2, but
that's a different issue). Only enable the heterogeneous rdma code for
a btl if it supports it (via a flag), as some btls need some work for this
to work properly. Currently only TCP and OpenIB extensively tested
This commit was SVN r15990.
* bml.h had a change that introduced a variable named "_order" to
avoid a conflict with a local variable. The namespace starting
with _ belongs to the os/compiler/kernel/not us. So we can't start
symbols with _. So I replaced it with arg_order, and also updated
the threaded equivalent of the macro that was modified.
* in btl_openib_proc.c, one opal_output accidentally had its string
reverted from "ompi_modex_recv..." to
"mca_pml_base_modex_recv....". This was fixed.
* The change to ompi/runtime/ompi_preconnect.c was entirely
reverted; it was an artifact of debugging.
This commit was SVN r15475.
The following SVN revision numbers were found above:
r15474 --> open-mpi/ompi@8ace07efed
1. Galen's fine-grain control of queue pair resources in the openib
BTL.
1. Pasha's new implementation of asychronous HCA event handling.
Pasha's new implementation doesn't take much explanation, but the new
"multifrag" stuff does.
Note that "svn merge" was not used to bring this new code from the
/tmp/ib_multifrag branch -- something Bad happened in the periodic
trunk pulls on that branch making an actual merge back to the trunk
effectively impossible (i.e., lots and lots of arbitrary conflicts and
artifical changes). :-(
== Fine-grain control of queue pair resources ==
Galen's fine-grain control of queue pair resources to the OpenIB BTL
(thanks to Gleb for fixing broken code and providing additional
functionality, Pasha for finding broken code, and Jeff for doing all
the svn work and regression testing).
Prior to this commit, the OpenIB BTL created two queue pairs: one for
eager size fragments and one for max send size fragments. When the
use of the shared receive queue (SRQ) was specified (via "-mca
btl_openib_use_srq 1"), these QPs would use a shared receive queue for
receive buffers instead of the default per-peer (PP) receive queues
and buffers. One consequence of this design is that receive buffer
utilization (the size of the data received as a percentage of the
receive buffer used for the data) was quite poor for a number of
applications.
The new design allows multiple QPs to be specified at runtime. Each
QP can be setup to use PP or SRQ receive buffers as well as giving
fine-grained control over receive buffer size, number of receive
buffers to post, when to replenish the receive queue (low water mark)
and for SRQ QPs, the number of outstanding sends can also be
specified. The following is an example of the syntax to describe QPs
to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues:
{{{
-mca btl_openib_receive_queues \
"P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32"
}}}
Each QP description is delimited by ";" (semicolon) with individual
fields of the QP description delimited by "," (comma). The above
example therefore describes 4 QPs.
The first QP is:
P,128,16,4
Meaning: per-peer receive buffer QPs are indicated by a starting field
of "P"; the first QP (shown above) is therefore a per-peer based QP.
The second field indicates the size of the receive buffer in bytes
(128 bytes). The third field indicates the number of receive buffers
to allocate to the QP (16). The fourth field indicates the low
watermark for receive buffers at which time the BTL will repost
receive buffers to the QP (4).
The second QP is:
S,1024,256,128,32
Shared receive queue based QPs are indicated by a starting field of
"S"; the second QP (shown above) is therefore a shared receive queue
based QP. The second, third and fourth fields are the same as in the
per-peer based QP. The fifth field is the number of outstanding sends
that are allowed at a given time on the QP (32). This provides a
"good enough" mechanism of flow control for some regular communication
patterns.
QPs MUST be specified in ascending receive buffer size order. This
requirement may be removed prior to 1.3 release.
This commit was SVN r15474.
than just the PML/BTLs these days. Also clean up the code so that it
handles the situation where not all nodes register information for a given
node (rather than just spinning until that node sends information, like
we do today).
Includes r15234 and r15265 from the /tmp/bwb-modex branch.
This commit was SVN r15310.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r15234
r15265
relative bandwidths of each BTL. Precalculate what part of a message should
be send via each BTL in advance instead of doing it during scheduling.
This commit was SVN r15248.
This is required to tighten up the BTL semantics. Ordering is not guaranteed,
but, if the BTL returns a order tag in a descriptor (other than
MCA_BTL_NO_ORDER) then we may request another descriptor that will obey
ordering w.r.t. to the other descriptor.
This will allow sane behavior for RDMA networks, where local completion of an
RDMA operation on the active side does not imply remote completion on the
passive side. If we send a FIN message after local completion and the FIN is
not ordered w.r.t. the RDMA operation then badness may occur as the passive
side may now try to deregister the memory and the RDMA operation may still be
pending on the passive side.
Note that this has no impact on networks that don't suffer from this
limitation as the ORDER tag can simply always be specified as
MCA_BTL_NO_ORDER.
This commit was SVN r14768.