1. taking advantage of the fact that we no longer create the launch message via a GPR trigger. In earlier times, we had the GPR create the launch message based on a subscription. In that mode of operation, we could not guarantee the order in which the data was stored in the message - hence, we had no choice but to parse the message in a loop that checked each value against a list of possible "keys" until the corresponding value was found.
Now, however, we construct the message "by hand", so we know precisely what data is in each location in the message. Thus, we no longer need to send the character string "keys" for each data value any more. This represents a rather large savings in the message size - to give you an example, we typically would use a 30-char "key" for a 2-byte data value. As you can see, the overhead can become very large.
2. sending node-specific data only once. Again, because we used to construct the message via subscriptions that were done on a per-proc basis, the data for each node (e.g., the daemon's name, whether or not the node was oversubscribed) would be included in the data for each proc. Thus, the node-specific data was repeated for every proc.
Now that we construct the message "by hand", there is no reason to do this any more. Instead, we can insert the data for a specific node only once, and then provide the per-proc data for that node. We therefore not only save all that extra data in the message, but we also only need to parse the per-node data once.
The savings become significant at scale. Here is a comparison between the revised trunk and the trunk prior to this commit (all data was taken on odin, using openib, 64 nodes, unity message routing, tested with application consisting of mpi_init/mpi_barrier/mpi_finalize, all execution times given in seconds, all launch message sizes in bytes):
Per-node scaling, taken at 1ppn:
#nodes original trunk revised trunk
time size time size
1 0.10 819 0.09 564
2 0.14 1070 0.14 677
3 0.15 1321 0.14 790
4 0.15 1572 0.15 903
8 0.17 2576 0.20 1355
16 0.25 4584 0.21 2259
32 0.28 8600 0.27 4067
64 0.50 16632 0.39 7683
Per-proc scaling, taken at 64 nodes
ppn original trunk revised trunk
time size time size
1 0.50 16669 0.40 7720
2 0.55 32733 0.54 11048
3 0.87 48797 0.81 14376
4 1.0 64861 0.85 17704
Condensing those numbers, it appears we gained:
per-node message size: 251 bytes/node -> 113 bytes/node
per-proc message size: 251 bytes/proc -> 52 bytes/proc
per-job message size: 568 bytes/job -> 399 bytes/job
(job-specific data such as jobid, override oversubscribe flag, total #procs in job, total slots allocated)
The fact that the two pre-commit trunk numbers are the same confirms the fact that each proc was containing the node data as well. It isn't quite the 10x message reduction I had hoped to get, but it is significant and gives much better scaling.
Note that the timing info was, as usual, pretty chaotic - the numbers cited here were typical across several runs taken after the initial one to avoid NFS file positioning influences.
Also note that this commit removes the orte_process_info.vpid_start field and the handful of places that passed that useless value. By definition, all jobs start at vpid=0, so all we were doing is passing "0" around. In fact, many places simply hardwired it to "0" anyway rather than deal with it.
This commit was SVN r16428.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
* General TCP cleanup for OPAL / ORTE
* Simplifying the OOB by moving much of the logic into the RML
* Allowing the OOB RML component to do routing of messages
* Adding a component framework for handling routing tables
* Moving the xcast functionality from the OOB base to its own framework
Includes merge from tmp/bwb-oob-rml-merge revisions:
r15506, r15507, r15508, r15510, r15511, r15512, r15513
This commit was SVN r15528.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r15506
r15507
r15508
r15510
r15511
r15512
r15513
Cleanup ALL instances of output involving the printing of orte_process_name_t structures using the ORTE_NAME_ARGS macro so that the number of fields and type of data match. Replace those values with a new macro/function pair ORTE_NAME_PRINT that outputs a string (using the new thread safe data capability) so that any future changes to the printing of those structures can be accomplished with a change to a single point.
Note that I could not possibly find outputs that directly print the orte_process_name_t fields, but only dealt with those that used ORTE_NAME_ARGS. Hence, you may still have a few outputs that bark during compilation. Also, I could only verify those that fall within environments I can compile on, so other environments may yield some minor warnings.
This commit was SVN r15517.
Per discussions with Brian and Ralph, make a slight correction in
where components are installed. Use $pkglibdir, not $libdir/openmpi,
so that when compiled in the orte trunk, components are installed to
the right directory (because the component search patch is checking
$pkglibdir).
This commit was SVN r14345.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r14289
This merge adds Checkpoint/Restart support to Open MPI. The initial
frameworks and components support a LAM/MPI-like implementation.
This commit follows the risk assessment presented to the Open MPI core
development group on Feb. 22, 2007.
This commit closes trac:158
More details to follow.
This commit was SVN r14051.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r13912
The following Trac tickets were found above:
Ticket 158 --> https://svn.open-mpi.org/trac/ompi/ticket/158
components that use configure.m4 for configuration or are always built.
The macro has not been needed since moving to configure types other than
configure.stub
Fixes trac:590
This commit was SVN r13031.
The following Trac tickets were found above:
Ticket 590 --> https://svn.open-mpi.org/trac/ompi/ticket/590
Accordingly, there are new APIs to the name service to support the ability to get a job's parent, root, immediate children, and all its descendants. In addition, the terminate_job, terminate_orted, and signal_job APIs for the PLS have been modified to accept attributes that define the extent of their actions. For example, doing a "terminate_job" with an attribute of ORTE_NS_INCLUDE_DESCENDANTS will terminate the given jobid AND all jobs that descended from it.
I have tested this capability on a MacBook under rsh, Odin under SLURM, and LANL's Flash (bproc). It worked successfully on non-MPI jobs (both simple and including a spawn), and MPI jobs (again, both simple and with a spawn).
This commit was SVN r12597.
- use the OPAL functions for PATH and environment variables
- make all headers C++ friendly
- no unamed structures
- no implicit cast.
Plus a full implementation for the orte_wait functions.
This commit was SVN r11347.
different macros, one for each project. Therefore, now we have OPAL_DECLSPEC,
ORTE_DECLSPEC and OMPI_DECLSPEC. Please use them based on the sub-project.
This commit was SVN r11270.
Clean up the remainder of the size_t references in the runtime itself. Convert to orte_std_cntr_t wherever it makes sense (only avoid those places where the actual memory size is referenced).
Remove the obsolete oob barrier function (we actually obsoleted it a long time ago - just never bothered to clean it up).
I have done my best to go through all the components and catch everything, even if I couldn't test compile them since I wasn't on that type of system. Still, I cannot guarantee that problems won't show up when you test this on specific systems. Usually, these will just show as "warning: comparison between signed and unsigned" notes which are easily fixed (just change a size_t to orte_std_cntr_t).
In some places, people didn't use size_t, but instead used some other variant (e.g., I found several places with uint32_t). I tried to catch all of them, but...
Once we get all the instances caught and fixed, this should once and for all resolve many of the heterogeneity problems.
This commit was SVN r11204.
- move files out of toplevel include/ and etc/, moving it into the
sub-projects
- rather than including config headers with <project>/include,
have them as <project>
- require all headers to be included with a project prefix, with
the exception of the config headers ({opal,orte,ompi}_config.h
mpi.h, and mpif.h)
This commit was SVN r8985.
The NS replica should give out tags that are over ORTE_RML_TAG_DYNAMIC
or it will overlap with other outstanding tags. This overlap was killing
MPI_Comm_spawn when a program tried to use it multiple times (> 3).
With this fix MPI_Comm_spawn is behaving properly.
A program can call it many times in a row with out problem.
NOTE: Not tested for multi-threaded build yet
(A long time debugging for a one liner... :/)
This commit was SVN r7529.
AM_INIT_AUTOMAKE, instead of the deprecated version.
* Work around dumbness in modern AC_INIT that requires the version
number to be set at autoconf time (instead of at configure time, as
it was before). Set the version number, minus the subversion r number,
at autoconf time. Override the internal variables to include the r
number (if needed) at configure time. Basically, the right thing
should always happen. The only place it might not is the version
reported as part of configure --help will not have an r number.
* Since AM_INIT_AUTOMAKE taks a list of options, no need to specify
them in all the Makefile.am files.
* Addes support for subdir-objects, meaning that object files are put
in the directory containing source files, even if the Makefile.am is
in another directory. This should start making it feasible to
reduce the number of Makefile.am files we have in the tree, which
will greatly reduce the time to run autogen and configure.
This commit was SVN r7211.
Here's the huge registry check-in you've all been waiting for with baited breath. The revised version sends a single message to all processes at the various stage gates, thus making the startup much more scalable. I could provide you with all the tawdry details, but won't for now - you are welcome to ask, though, and I'll merrily bore your ears to tears.
In addition, the commit contains the following:
1. set the ignore properties on ompi/debuggers and orte/mca/pls/poe
2. Added simplified subscribe and put functions to the registry's API. I have also converted all of the ompi functions that registered subscriptions to the new API, and caught their associated put's as well.
In a follow-on commit, I'll be adding support for George's hetero arch registry subscription (wanted to get this one in first).
This commit was SVN r7118.
ns_replica.c
- Removed the error logging since I use this function in orte_init_stage1 to
check if we have created a cellid yet or not.
ras_types.h & rase_base_node.h
- This was an empty file. moved the orte_ras_node_t from base/ras_base_node.h
to this file.
- Changed the name of orte_ras_base_node_t to orte_ras_node_t to match the
naming mechanisms in place.
ras.h
- Exposed 2 functions:
- node_insert:
This takes a list of orte_ras_base_node_t's and places them in the Node
Segment of the GPR. This is to be used in orte_init_stage1 for singleton
processes, and the hostfile parsing (see rds_hostfile.c). This just puts
in the appropriate API interface to keep from calling the
orte_ras_base_node_insert function directly.
- node_query:
This is used in hostfile parsing. This just puts in the appropriate API
interface to keep from calling the orte_ras_base_node_query function
directly.
- Touched all of the implemented components to add reference to these new
function pointers
ras_base_select.c & ras_base_open.c
- Add and set the global module reference
rds.h
- Exposed 1 function:
- store_resource:
This stores a list of rds_cell_desc_t's to the Resource Segment.
This is used in conjunction with the orte_ras.node_insert function in
both the orte_init_stage1 for singleton processes and rds_hostfile.c
rds_base_select.c & rds_base_open.c
- Add and set the global module reference
rds_hostfile.c
- Added functionality to create a new cellid for each hostfile, placing
each entry in the hostfile into the same cellid. Currently this is
commented out with the cellid hard coded to 0, with the intention of
taking this out once ORTE is able to handle multiple cellid's
- Instead of just adding hosts to the Node Segment via a direct call to
the ras_base_node_insert() function. First add the hosts to the Resource
Segment of the GPR using the orte_rds.store_resource() function then use
the API version of orte_ras.node_insert() to store the hosts on the Node
Segment.
- Add 1 new function pointer to module as required by the API.
rds_hostfile_component.c
- Converted this to use the new MCA parameter registration
orte_init_stage1.c
- It is possible that a cellid was not created yet for the current environment.
So I put in some logic to test if the cellid 0 existed. If it does then
continue, otherwise create the cellid so we can properly interact with the
GPR via the RDS.
- For the singleton case we insert some 'dummy' data into the GPR. The RAS
matches this logic, so I took out the duplicate GPR put logic, and
replaced it with a call to the orte_ras.node_insert() function.
- Further before calling orte_ras.node_insert() in the singleton case,
we also call orte_rds.store_resource() to add the singleton node to the
Resource Segment.
Console:
- Added a bunch of new functions. Still experimenting with many aspects of the
implementation. This is a checkpoint, and has very limited functionality.
- Should not be considered stable at the moment.
This commit was SVN r6813.
1. dump_xxx - analogous to the registry's dump commands, allows you to examine the contents of the name services' structures
2. get_job_peers - get an array of process names for all processes in the specified job
This commit was SVN r6759.
test from orte_init_stage1 into a new framework, Startup Discovery Service
(sds). This allows us to have more flexibility with platforms like
Red Storm, which do not have a universe in the usual meaning and don't have
a seed daemon they can contact
This commit was SVN r6630.
- After long discussions and ruminations on how we run components in
LAM/MPI, made the decision that, by default, all components included
in Open MPI will use the version number of their parent project
(i.e., OMPI or ORTE). They are certaint free to use a different
number, but this simplification makes the common cases easy:
- components are only released when the parent project is released
- it is easy (trivial?) to distinguish which version component goes
with with version of the parent project
- removed all autogen/configure code for templating the version .h
file in components
- made all ORTE components use ORTE_*_VERSION for version numbers
- made all OMPI components use OMPI_*_VERSION for version numbers
- removed all VERSION files from components
- configure now displays OPAL, ORTE, and OMPI version numbers
- ditto for ompi_info
- right now, faking it -- OPAL and ORTE and OMPI will always have the
same version number (i.e., they all come from the same top-level
VERSION file). But this paves the way for the Great Configure
Reorganization, where, among other things, each project will have
its own version number.
So all in all, we went from a boatload of version numbers to
[effectively] three. That's pretty good. :-)
This commit was SVN r6344.