with the last one was that the resized function only set the soft lb and ub
markers without actually moving the usefull data up to the correct
displacement. Using a struct instead solve the problem. Anyway, as defined
in the MPI standard we have to set the lower bound and the upper bound
of the new type to the correct values too.
This commit was SVN r10328.
MPI_FILE_GET_INFO should return the info currently in use, not the one
used to create the file handle. ROMIO adds a bunch of keys, so you can
create a file handle with MPI_INFO_NULL and have MPI_FILE_GET_INFO return
something totatlly different.
This commit was SVN r10312.
* Change the type of Fortan's MPI_STATUSES_IGNORE to double complex
so that it will never possibly be mistaken for a real status (i.e.,
integer(MPI_STATUS_SIZE)), particularly in the F90 bindings. See
comment in mpif-common.h explaining this (analogous argument to
MPI_ARGVS_NULL for MPI_COMM_SPAWN_MULTIPLE).
* Add second interfaces for the following functions that take a double
complex (i.e., MPI_STATUSES_IGNORE). This required adding the second
interface in mpi-f90-interfaces.h[.sh] and then generating new wrapper
functions to call the back-end F77 function for each of these four, so
we added 4 new files in ompi/mpi/f90/scripts/ and updated the various
Makefile.am's to match:
* MPI_TESTALL
* MPI_TESTSOME
* MPI_WAITALL
* MPI_WAITSOME
The XSL is now not in sync with the scripts. Although I suppose that
that is becoming less and less important (because it does not impact
the end user at all -- to be 100% explicit, no release should ever be
held up because the XSL is out of sync), but it will probably be
important when we go to fix the "large" interface; so it's still worth
fixing... for now...
This commit was SVN r10281.
- Make the F90 bindings compile and link properly with gfortran 4.0,
4.1, Intel 9.0, PGI 6.1, Sun (don't know version offhand -- the most
current as of this writing, I think), and NAG 5.2, although some
have limitations (e.g., NAG can't seem to handle the medium and
large sizes)
- Building the F90 "small" module size is now the default, even for
developers
- Split up mpif.h into multiple files because parts of it were toxic
to the F90 bindings
- Properly specify unsized/unshaped arrays to make the bindings work
on all known compilers
- Make ompi_info show Fortran 90 bindings size
- XML somewhat lags the generated scripts as of this commit, but
functionality was my main goal -- the XML can be updated later (if
at all).
This commit was SVN r10118.
- split mpif.h into mpif.h and mpif-common.h[.in]
- mpif-common.h is included by various f90 things and contains output
from configure
- mpif.h defines some f77-specific stuff and then includes
mpif-common.h
This commit was SVN r9997.
comment in ompi_comm_invalid() in
source:/trunk/ompi/communicator/communicator.h.
Short version:
- ompi_comm_invalid() returns TRUE for MPI_COMM_NULL
- therefore MPI_COMM_C2F needs to explicitly check for MPI_COMM_NULL
(because it uses ompi_comm_invalid())
- make ~20 MPI functions only call ompi_comm_invalid() instead of
calling ompi_comm_invalid() *and* checking for MPI_COMM_NULL (~40 MPI
functions already only called ompi_comm_invalid() -- we should be
consistent)
- similar issue for ompi_win_invalid(), so I added a cross-referencing
comment in win.h and fixed MPI_WIN_SET_NAME to only call
ompi_win_invalid() (and not check for MPI_WIN_NULL)
This commit was SVN r9970.
being null, if the constant MPI_ERRCODES_IGNORE is defined as (void *)
NULL;
- the communicator in file open has to be an intra-communicator.
This commit was SVN r9893.
svn merge -r 9453:9609 https://svn.open-mpi.org/svn/ompi/tmp/f90-stuff .
Several improvements over the current F90 MPI bindings:
- The capability to make 4 sizes of the F90 bindings:
- trivial: only the F90-specific MPI functions (sizeof and a few
others)
- small: (this is the default) all MPI functions that do not take
choice buffers
- medium: small + all MPI functions that take one choice buffer
(e.g., MPI_SEND)
- large: all MPI functions, but those that take 2 choice buffers
(e.g., MPI_GATHER) only allow both buffers to be of the same type
- Remove all non-standard MPI types (LOGICAL*x, CHARACTER*x)
- Remove use of selected_*_kind() and only use MPI-defined types
(INTEGER*x, etc.)
- Decrease complexity of the F90 configure and build system
This commit was SVN r9610.
functions return an invalid fortran handle (-1) if an invalid C handle
is passed in.
Just so it's logged somewhere -- it looks like commit 2 of 2 as noted
in the r9560 commit message (ok, 3 of 3 if you're really counting),
where we have to edit the C interface functions to check for NULL, is
going to be far easier than I thought -- many (but not all) of the C
interface functions already check for NULL MPI handles (either
directly or through helper functions).
Woo hoo for foresight...
This commit was SVN r9561.
The following SVN revision numbers were found above:
r9560 --> open-mpi/ompi@e00c6053dc
handling of invalid Fortran handles. Per MPI-2:4.12.4, if we get an
invalid Fortran handle, we should return an invalid C handle. Before
this commit, we checked if the fortran handle index was out of range
(i.e., <0 or >sizeof(array)). If so, we used to return MPI_*_NULL
(i.e., a valid C handle). But to be faithful to MPI-2:4.12.4, we
now return NULL (an invalid C handle).
If the fortran index is in bounds but is an index for an MPI object
that has already been freed, the code already returns NULL because the
entry in the array will be NULL (i.e., we already did what
MPI-2:4.12.4 said for this case).
Hence, this commit makes the handling of invalid fortran handles in
the MPI_*_F2C functions be uniform: we always return NULL.
Commit 2 of this will be to edit just about every C interface function
(!) to ensure that MPI handles are not NULL. Otherwise, if the user
calls a fortran interface function with an invalid handle, the fortran
interface function will call MPI_*_F2C and blindly pass the result to
the back-end C function. The C function will eventually end up trying
to dereference it -- segv. Having a run-time check for NULL and
invoking an MPI exception is far more social (e.g., the user can get a
stack trace out of MPI_ABORT) and consistent (i.e., we're already
checking for MPI_*_NULL in the C interface functions).
Since all the C interface functions have all the machinery for
run-time parameter checking, and they all already check for
MPI_*_NULL, it's easy enough to add another check for NULL.
This commit was SVN r9560.