Historically these two lists were different due to ompi_free_list_t
dependencies in ompi (mpool). Those dependencies have since been moved
to opal so it is safe to (finally) combine them. The combined free
list comes in three flavors:
- Single-threaded. Only to be used when it is guaranteed that no
concurrent access will be made to the free list. Single-threaded
functions are suffixed with _st.
- Mutli-threaded. To be used when the free list may be accessed by
multiple threads despite the setting of opal_using_threads.
Multi-threaded functins are suffixed with _mt.
- Conditionally multi-threaded. Common use case. These functions are
thread-safe if opal_using_threads is set to true.
Compatibility functions for the ompi_free_list_t and the old accessor
functions (OPAL_FREE_LIST_*) are available while the code base is
transitioned to the new class/functions.
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
This commit adds a new class: opal_fifo.h. The new class has atomic, non-atomic,
and opal_using_threads() conditoned routines. It should be used when first-in
first-out is required and should perform much better than using locks and an
opal_list_t. Like with opal_lifo_t there are two versions of the atomic
implementation: 128-bit compare-and-swap, and spin-locked. More implementations
can be added later (LL/SC comes to mind).
This commit also adds a unit test for the opal_fifo_t class. This test verifies
the fifo implementation when using multiple threads.
- Rename opal_atomic_lifo_t to opal_lifo_t to reflect both atomic and
non-atomic usage. Added new routines (opal_lifo_*_st) for non-atomic
usage as well as routines conditioned off opal_using_threads(). The
atomic versions are always thread safe and the non-atomic are always
not thread safe.
- Add a new atomic lifo implementation that makes use of 128-bit
compare-and-swap. The new implementation should scale better with
larger numbers of threads.
- Add threading unit test for opal_lifo_t.
These two macros set the prefix for the OPAL and ORTE libraries,
respectively. Specifically, the OPAL library will be named
libPREFIXopen-pal.la and the ORTE library will be named
libPREFIXopen-rte.la.
These macros must be called, even if the prefix argument is empty.
The intent is that Open MPI will call these macros with an empty
prefix, but other projects (such as ORCM) will call these macros with
a non-empty prefix. For example, ORCM libraries can be named
liborcm-open-pal.la and liborcm-open-rte.la.
This scheme is necessary to allow running Open MPI applications under
systems that use their own versions of ORTE and OPAL. For example,
when running MPI applications under ORTE, if the ORTE and OPAL
libraries between OMPI and ORCM are not identical (which, because they
are released at different times, are likely to be different), we need
to ensure that the OMPI applications link against their ORTE and OPAL
libraries, but the ORCM executables link against their ORTE and OPAL
libraries.
the OPAL and ORTE libraries. This is required by projects such as ORCM
that have their own ORTE and OPAL libraries in order to avoid library
confusion. By renaming their version of the libraries, the OMPI
applications can correctly dynamically load the correct one for their
build."
This reverts commit 63f619f8719fb853d76130d667f228b0a523bd60.
WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL
All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic.
This commit was SVN r32317.
following:
* Provides a fixed number of resource slots (i.e., "hotel rooms").
* Allows one thing to occupy a resource slot at a time (i.e., each
hotel room can have an occupant check in to that room).
* Resource slots can be vacated at any time (i.e., occupants can
voluntarily check out of their hotel room).
* Resource slots can be occupied for a specific maximum amount of
time. If that time expires, the occupant is forcibly evicted and
the upper layer is notified via (libevent) callback (i.e., the maid
will kick an occupant of out of their room when their reservation
is over).
This class can be to be used for things like retransmission schemes
for unreliable transports. For example, a message sent on an
unreliable transport can be checked in to a hotel room. If an ACK for
that message is received, the message can be checked out. But if the
ACK is never received, the message will eventually be evicted from its
room and the upper layer will be notified that the message failed to
check out in time (i.e., that an ACK for that message was not received
in time).
Code using this class is currently being developed off-trunk, but will
be coming to SVN soon.
This commit was SVN r27067.
Refers to ticket #1548. Although this appears to fix the problem, the ticket will be held open pending further test prior to transition to the 1.3 branch.
This commit was SVN r19674.
(sometimes after the merge with the ORTE branch), the opal_pointer_array
will became the only pointer_array implementation (the orte_pointer_array
will be removed).
This commit was SVN r17007.
originally suggested by Ralf Wildenhues, to try to speed autogen, configure,
and make (and possibly even make install). Use automake's include directive
to drastically reduce the number of Makefile files (although the number of
Makefile.am files is the same - most are just included in a top-level
Makefile.am). Also use an Automake SUBDIRs feature to eliminate the
dynamic-mca tree, which was no longer really needed. This makes adding
a framework easier (since you don't have to remember the dynamic-mca
tree) and makes building faster (as make doesn't have to recurse through
the dynamic-mca tree)
This commit was SVN r7777.
AM_INIT_AUTOMAKE, instead of the deprecated version.
* Work around dumbness in modern AC_INIT that requires the version
number to be set at autoconf time (instead of at configure time, as
it was before). Set the version number, minus the subversion r number,
at autoconf time. Override the internal variables to include the r
number (if needed) at configure time. Basically, the right thing
should always happen. The only place it might not is the version
reported as part of configure --help will not have an r number.
* Since AM_INIT_AUTOMAKE taks a list of options, no need to specify
them in all the Makefile.am files.
* Addes support for subdir-objects, meaning that object files are put
in the directory containing source files, even if the Makefile.am is
in another directory. This should start making it feasible to
reduce the number of Makefile.am files we have in the tree, which
will greatly reduce the time to run autogen and configure.
This commit was SVN r7211.
- move mpool and allocator frameworks back to ompi (from opal)
- specialize the ompi_free_list class to use an mpool instance
- un-specialize opal_free_list to *not* use mpool; just use malloc/free
This commit was SVN r6292.