The bug was a race condition in the barrier operation that caused the barrier in MPI_Finalize to fail on very short programs.
Scalaiblity was improved by using the daemons to aggregate modex and barrier messages before sending them to the rank=0 proc. Improvement is proportional to ppn, of course, but there really wasn't a scaling problem at low ppn anyway. This modification also paves the way for better allgather operations since now all the data for each node is sitting at the daemon level, and the daemons are now aware that a collective operation on the OOB is underway (so they -can- participate in a collective of their own to support it).
Also added better diagnostics to map out the timing associated with MPI_Init - turned on by -mca orte_timing 1.
This commit was SVN r17988.
Only one place used the user name field - session_dir, when formulating the name of the top-level directory. Accordingly, the code for getting the user's id has been moved to the session_dir code.
This commit was SVN r17926.
Note that --path specifies extra directories where the executable
is searched for, but does not affect the PATH settings.
This commit fixes trac:1221.
This commit was SVN r17748.
The following Trac tickets were found above:
Ticket 1221 --> https://svn.open-mpi.org/trac/ompi/ticket/1221
Basically, the method employed here is to have a recv create a zero-time timer event that causes the event library to execute a function that processes the message once the recv returns. Thus, any action taken as a result of processing the message occur outside of a recv.
Created two new macros to assist:
ORTE_MESSAGE_EVENT: creates the zero-time event, passing info in a new orte_message_event_t object
ORTE_PROGRESSED_WAIT: while waiting for specified conditions, just calls progress so messages can be recv'd.
Also fixed the failed_launch function as we no longer block in the orted callback function. Updated the error messages to reflect revision. No change in API to this function, but PLM "owners" may want to check their internal error messages to avoid duplication and excessive output.
This has been tested on Mac, TM, and SLURM.
This commit was SVN r17647.
variable is not defined. Make sure to set it to something reasonable
so that file preloading still works (instead of seg faulting :)
Thanks to Hiep Bui Hoang for reporting this bug.
This commit was SVN r16433.
1. taking advantage of the fact that we no longer create the launch message via a GPR trigger. In earlier times, we had the GPR create the launch message based on a subscription. In that mode of operation, we could not guarantee the order in which the data was stored in the message - hence, we had no choice but to parse the message in a loop that checked each value against a list of possible "keys" until the corresponding value was found.
Now, however, we construct the message "by hand", so we know precisely what data is in each location in the message. Thus, we no longer need to send the character string "keys" for each data value any more. This represents a rather large savings in the message size - to give you an example, we typically would use a 30-char "key" for a 2-byte data value. As you can see, the overhead can become very large.
2. sending node-specific data only once. Again, because we used to construct the message via subscriptions that were done on a per-proc basis, the data for each node (e.g., the daemon's name, whether or not the node was oversubscribed) would be included in the data for each proc. Thus, the node-specific data was repeated for every proc.
Now that we construct the message "by hand", there is no reason to do this any more. Instead, we can insert the data for a specific node only once, and then provide the per-proc data for that node. We therefore not only save all that extra data in the message, but we also only need to parse the per-node data once.
The savings become significant at scale. Here is a comparison between the revised trunk and the trunk prior to this commit (all data was taken on odin, using openib, 64 nodes, unity message routing, tested with application consisting of mpi_init/mpi_barrier/mpi_finalize, all execution times given in seconds, all launch message sizes in bytes):
Per-node scaling, taken at 1ppn:
#nodes original trunk revised trunk
time size time size
1 0.10 819 0.09 564
2 0.14 1070 0.14 677
3 0.15 1321 0.14 790
4 0.15 1572 0.15 903
8 0.17 2576 0.20 1355
16 0.25 4584 0.21 2259
32 0.28 8600 0.27 4067
64 0.50 16632 0.39 7683
Per-proc scaling, taken at 64 nodes
ppn original trunk revised trunk
time size time size
1 0.50 16669 0.40 7720
2 0.55 32733 0.54 11048
3 0.87 48797 0.81 14376
4 1.0 64861 0.85 17704
Condensing those numbers, it appears we gained:
per-node message size: 251 bytes/node -> 113 bytes/node
per-proc message size: 251 bytes/proc -> 52 bytes/proc
per-job message size: 568 bytes/job -> 399 bytes/job
(job-specific data such as jobid, override oversubscribe flag, total #procs in job, total slots allocated)
The fact that the two pre-commit trunk numbers are the same confirms the fact that each proc was containing the node data as well. It isn't quite the 10x message reduction I had hoped to get, but it is significant and gives much better scaling.
Note that the timing info was, as usual, pretty chaotic - the numbers cited here were typical across several runs taken after the initial one to avoid NFS file positioning influences.
Also note that this commit removes the orte_process_info.vpid_start field and the handful of places that passed that useless value. By definition, all jobs start at vpid=0, so all we were doing is passing "0" around. In fact, many places simply hardwired it to "0" anyway rather than deal with it.
This commit was SVN r16428.
This patch also fixes a minor bug discovered along the way: we had "lost" the passing of the oversubscribed condition flag from the mapper to the orteds. Thus, we were not setting sched_yield correctly when in oversubscribed conditions (except when a hostfile was specified - different logic there because we treat the number of slots allocated on the node as "uncertain")
I did not modify the process component in this patch - I will send a proposed patch to the maintainers of that component so they can review it first.
This commit was SVN r16418.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
(Someday I'll learn to do this before committing)
This commit was SVN r16260.
The following SVN revision numbers were found above:
r16252 --> open-mpi/ompi@e10f476c87
and implementation. This has shown drastic performance benefit when
transferring Many files at roughly the same time.
I tested this for many different filem operations and everything was working
fine. Let me know if you have any problems with this functionality.
Some Notes:
- opal-checkpoint now has a 'quiet' flag to keep it from being too verbose.
- FileM RSH component is fully non-blocking.
- FileM RSH component has incomming connection throttling since by default
ssh only allows 10 concurrent scp connections to any single host. This
default can be adjusted via an MCA parameter.
{{{-mca filem_rsh_max_incomming 10}}}
- There is an MCA parameter for max outgoing connections, but it is currently
not implemented. If someone needs it then it should not be hard to implement.
{{{-mca filem_rsh_max_outgoing 10}}}
- Changed the FileM request structure so that it is a bit more explicit and
flexible.
- Moved the 'preload-binary' and 'preload-files' functionality into odls/base
allowing for code reuse in the 'process' and 'default' ODLS components.
- Fixed a bug in the process name resolution which broke the 'preload-*'
functionality due to GPR table structure changes.
- The FileM RSH component might be able to see even more speedup from using a
thread pool to operate on the work_pool structures, but that is for future
work.
- Added a 'opal-show-help' file to ODLS Base
This commit was SVN r16252.
A subset of this patch needs to be applied to v1.2
Refs trac:928
This commit was SVN r15918.
The following Trac tickets were found above:
Ticket 928 --> https://svn.open-mpi.org/trac/ompi/ticket/928
You will not see any impact from this change unless you use the syntax described in ticket #1023. I've tried as many of the RAS components as possible and saw no problem - there may be issues with other RAS components that would not compile on any of my systems. Anything that appears should be trivial to fix.
This commit was SVN r15427.
Short description: major changes include -
1. singletons now fork/exec a local daemon to manage their operations.
2. the orte daemon code now resides in libopen-rte
3. daemons no longer use the orte triggering system during startup. Instead, they directly call back to their parent pls component to report ready to operate. A base function to count the callbacks has been provided.
I have modified all the pls components except xcpu and poe (don't understand either well enough to do it). Full functionality has been verified for rsh, SLURM, and TM systems. Compile has been verified for xgrid and gridengine.
This commit was SVN r15390.
To be precise, given this hypothetical launching pattern:
host1: vpids 0, 2, 4, 6
host2: vpids 1, 3, 5, 7
The local_rank for these procs would be:
host1: vpids 0->local_rank 0, v2->lr1, v4->lr2, v6->lr3
host2: vpids 1->local_rank 0, v3->lr1, v5->lr2, v7->lr3
and the number of local procs on each node would be four. If vpid=0 then does a comm_spawn of one process on host1, the values of the parent job would remain unchanged. The local_rank of the child process would be 0 and its num_local_procs would be 1 since it is in a separate jobid.
I have verified this functionality for the rsh case - need to verify that slurm and other cases also get the right values. Some consolidation of common code is probably going to occur in the SDS components to make this simpler and more maintainable in the future.
This commit was SVN r14706.
Test for system limits (where known) prior to doing things like fork and pipe since some systems aren't very nice about it when we try to exceed such limits.
This commit was SVN r14494.
There is a binomial algorithm in the code (i.e., the HNP would send to a subset of the orteds, which then relay it on according to the typical log-2 algo), but that has a bug in it so the code won't let you select it even if you tried (and the mca param doesn't show, so you'd *really* have to try).
This also involved a slight change to the oob.xcast API, so propagated that as required.
Note: this has *only* been tested on rsh, SLURM, and Bproc environments (now that it has been transferred to the OMPI trunk, I'll need to re-test it [only done rsh so far]). It should work fine on any environment that uses the ORTE daemons - anywhere else, you are on your own... :-)
Also, correct a mistake where the orte_debug_flag was declared an int, but the mca param was set as a bool. Move the storage for that flag to the orte/runtime/params.c and orte/runtime/params.h files appropriately.
This commit was SVN r14475.
1. implement and enable the non-described buffer operations. I will send out a more detailed explanation separately. However, this mode of operation (which is now the default) significantly reduces message size during startup. If you want the described buffers, set the mca param "-mca dss_describe_buffer 1".
2. revise the xcast system to support both linear and binomial tree broadcast methods. Since we are seeing scenarios where the binomiall tree can cause problems, I have made the linear method the default. To run with the binomial tree, set the mca param "-mca oob_xcast_mode binomial".
3. add some detailed timing reports to the xcast operation. These are enabled via "-mca oob_xcast_timing 1".
4. add some more unit tests for the dss and gpr (focused on support for the non-described buffer)
This commit was SVN r12722.
Add placeholders for the new orte tools. These don't actually do anything yet - in fact, I have set the .ompi_ignore so that you won't compile them (I have set a .ompi_unignore for me). Please let me know if you encounter any trouble with this - the ompi_ignore's should protect everyone.
This commit was SVN r12616.
1. new functionality in the pls base to check for reusable daemons and launch upon them
2. an extension of the odls API to allow each odls component to build a notify message with the "correct" data in it for adding processes to the local daemon. This means that the odls now opens components on the HNP as well as on daemons - but that's the price of allowing so much flexibility. Only the default odls has this functionality enabled - the others just return NOT_IMPLEMENTED
3. addition of a new command line option "--reuse-daemons" to orterun. The default, for now, is to NOT reuse daemons. Once we have more time to test this capability, we may choose to reverse the default. For one thing, we probably want to investigate the tradeoffs in start time for comm_spawn'd processes that reuse daemons versus launch their own. On some systems, though, having another daemon show up can cause problems - so they may want to set the default as "reuse".
This is ONLY enabled for rsh launch, at the moment. The code needing to be added to each launcher is about three lines long, so I'll be doing that as I get access to machines I can test it on.
This commit was SVN r12608.
Add some debugging output to the ODLS default module, and the orted.
Remove the nodename data from the ODLS info report - that info is already stored in the registry by the RMAPS framework upon completing the mapping procedure.
Add another test program that does an ORTE-only dynamic spawn (gasp!). Looks just like comm_spawn - just no MPI involved.
Modify the ODLS to release the processor when we "kill" local procs in a more scalable fashion. It previously had a sleep in it that Jeff's prior commit removed. However, he introduced some Windows code into the non-Windows component (protected by "if"s, but unnecessary). This is a more general solution he proposed - included here so I could get things to compile properly.
This commit was SVN r12579.
1. Fix the "hang" condition when an application isn't found. It turned out that the ODLS had some difficulty with the process actually not having been started - hence, it never called the waitpid callback. As a result, the "terminated" trigger didn't fire, and so mpirun didn't wake up. With this change, the HNP's errmgr forces the issue by causing the trigger to fire itself when an abort condition occurs.
2. Shift the recording of the pid and the nodename from mpi_init to the orted launcher. This allows programs such as Eclipse PTP to get the pids even for non-MPI applications. In the case of bproc, the pls handles this chore since we don't use orteds in that system.
This commit was SVN r12558.
This patch will cause a problem for cnos, however, as there we want to specifically tell the backends to be "null". I'm working on that issue.
This commit was SVN r12225.