for the F90 type create functions to the requirements of MPI 2.1 standard.
Advice to implementors. An application may often repeat a call to
MPI_TYPE_CREATE_F90_xxxx with the same combination of (xxxx,p,r).
The application is not allowed to free the returned predefined, unnamed
datatype handles. To prevent the creation of a potentially huge amount of
handles, the MPI implementation should return the same datatype handle for
the same (REAL/COMPLEX/INTEGER,p,r) combination. Checking for the
combination (p,r) in the preceding call to MPI_TYPE_CREATE_F90_xxxx and
using a hash-table to find formerly generated handles should limit the
overhead of finding a previously generated datatype with same combination
of (xxxx,p,r). (End of advice to implementors.)
This commit fixes trac:1239, and #712.
This commit was SVN r19458.
The following Trac tickets were found above:
Ticket 1239 --> https://svn.open-mpi.org/trac/ompi/ticket/1239
After much work by Jeff and myself, and quite a lot of discussion, it has become clear that we simply cannot resolve the infinite loops caused by RML-involved subsystems calling orte_output. The original rationale for the change to orte_output has also been reduced by shifting the output of XML-formatted vs human readable messages to an alternative approach.
I have globally replaced the orte_output/ORTE_OUTPUT calls in the code base, as well as the corresponding .h file name. I have test compiled and run this on the various environments within my reach, so hopefully this will prove minimally disruptive.
This commit was SVN r18619.
with something with a different size ... well we segfault. The reason was
that the logic in the PML OB1 call the convertor based on the length
of he data on the wire and not the length of the data that the receiver
expects.
In other words, this is only half a patch :) It fix the problem, but we
still have to make sure the unpack is not called at all when the receiver
expect ZERO bytes.
This commit was SVN r18474.
such, the commit message back to the master SVN repository is fairly
long.
= ORTE Job-Level Output Messages =
Add two new interfaces that should be used for all new code throughout
the ORTE and OMPI layers (we already make the search-and-replace on
the existing ORTE / OMPI layers):
* orte_output(): (and corresponding friends ORTE_OUTPUT,
orte_output_verbose, etc.) This function sends the output directly
to the HNP for processing as part of a job-specific output
channel. It supports all the same outputs as opal_output()
(syslog, file, stdout, stderr), but for stdout/stderr, the output
is sent to the HNP for processing and output. More on this below.
* orte_show_help(): This function is a drop-in-replacement for
opal_show_help(), with two differences in functionality:
1. the rendered text help message output is sent to the HNP for
display (rather than outputting directly into the process' stderr
stream)
1. the HNP detects duplicate help messages and does not display them
(so that you don't see the same error message N times, once from
each of your N MPI processes); instead, it counts "new" instances
of the help message and displays a message every ~5 seconds when
there are new ones ("I got X new copies of the help message...")
opal_show_help and opal_output still exist, but they only output in
the current process. The intent for the new orte_* functions is that
they can apply job-level intelligence to the output. As such, we
recommend that all new ORTE and OMPI code use the new orte_*
functions, not thei opal_* functions.
=== New code ===
For ORTE and OMPI programmers, here's what you need to do differently
in new code:
* Do not include opal/util/show_help.h or opal/util/output.h.
Instead, include orte/util/output.h (this one header file has
declarations for both the orte_output() series of functions and
orte_show_help()).
* Effectively s/opal_output/orte_output/gi throughout your code.
Note that orte_output_open() takes a slightly different argument
list (as a way to pass data to the filtering stream -- see below),
so you if explicitly call opal_output_open(), you'll need to
slightly adapt to the new signature of orte_output_open().
* Literally s/opal_show_help/orte_show_help/. The function signature
is identical.
=== Notes ===
* orte_output'ing to stream 0 will do similar to what
opal_output'ing did, so leaving a hard-coded "0" as the first
argument is safe.
* For systems that do not use ORTE's RML or the HNP, the effect of
orte_output_* and orte_show_help will be identical to their opal
counterparts (the additional information passed to
orte_output_open() will be lost!). Indeed, the orte_* functions
simply become trivial wrappers to their opal_* counterparts. Note
that we have not tested this; the code is simple but it is quite
possible that we mucked something up.
= Filter Framework =
Messages sent view the new orte_* functions described above and
messages output via the IOF on the HNP will now optionally be passed
through a new "filter" framework before being output to
stdout/stderr. The "filter" OPAL MCA framework is intended to allow
preprocessing to messages before they are sent to their final
destinations. The first component that was written in the filter
framework was to create an XML stream, segregating all the messages
into different XML tags, etc. This will allow 3rd party tools to read
the stdout/stderr from the HNP and be able to know exactly what each
text message is (e.g., a help message, another OMPI infrastructure
message, stdout from the user process, stderr from the user process,
etc.).
Filtering is not active by default. Filter components must be
specifically requested, such as:
{{{
$ mpirun --mca filter xml ...
}}}
There can only be one filter component active.
= New MCA Parameters =
The new functionality described above introduces two new MCA
parameters:
* '''orte_base_help_aggregate''': Defaults to 1 (true), meaning that
help messages will be aggregated, as described above. If set to 0,
all help messages will be displayed, even if they are duplicates
(i.e., the original behavior).
* '''orte_base_show_output_recursions''': An MCA parameter to help
debug one of the known issues, described below. It is likely that
this MCA parameter will disappear before v1.3 final.
= Known Issues =
* The XML filter component is not complete. The current output from
this component is preliminary and not real XML. A bit more work
needs to be done to configure.m4 search for an appropriate XML
library/link it in/use it at run time.
* There are possible recursion loops in the orte_output() and
orte_show_help() functions -- e.g., if RML send calls orte_output()
or orte_show_help(). We have some ideas how to fix these, but
figured that it was ok to commit before feature freeze with known
issues. The code currently contains sub-optimal workarounds so
that this will not be a problem, but it would be good to actually
solve the problem rather than have hackish workarounds before v1.3 final.
This commit was SVN r18434.
Event var_deref_model: Variable "array_of_integers" tracked as NULL was
passed to a function that dereferences it. [model]
The arrays passed down type_get_contents may be NULL, only iff max_* is 0...
If the max_* parameter does not fit, an error is returned, anyhow.
One could improve the checks of MPI_PARAM_CHECK, but to be on the
safe side, fix in dt_args.c.
This commit was SVN r17974.
(sometimes after the merge with the ORTE branch), the opal_pointer_array
will became the only pointer_array implementation (the orte_pointer_array
will be removed).
This commit was SVN r17007.
the ompi_convertor_need_buffers function to only return 0 if the convertor
is homogeneous (which it never does on the trunk, but does to on v1.2, but
that's a different issue). Only enable the heterogeneous rdma code for
a btl if it supports it (via a flag), as some btls need some work for this
to work properly. Currently only TCP and OpenIB extensively tested
This commit was SVN r15990.
It solve the problem with the MPI_Aint alignment that showed up on Solaris
Sparc and on heterogeneous environments when dealing with the data-type description.
The solution is to move the displacement array from the packed array if we
detect that the local architecture required MPI_Aint to be aligned to an
MPI_Aint boundary (which is not the case for x86 architectures if MPI_Aint
is a 64 bits type).
This commit was SVN r15395.
VxWorks. Still some issues remaining, I'm sure.
Refs trac:1010
This commit was SVN r15320.
The following Trac tickets were found above:
Ticket 1010 --> https://svn.open-mpi.org/trac/ompi/ticket/1010
of Fortran datatypes (mpif-common.h) and the list of registered
datatypes: MOOG(REAL2).
Configure and Compilation with ia32/gcc just finished, naturally
without real2.
This commit was SVN r15137.
Do not initialize them, if not.
If initializing them, check for the correct C-equivalent type
to copy from...
Issue a warning, when a type (e.g. REAL*16) is not available to
build the type (here COMPLEX*32).
This fixes issues with ompi and pacx.
Works with intel-compiler and FCFLAGS="-i8 -r8" on ia32.
This commit was SVN r14818.
The following SVN revision numbers were found above:
r8 --> open-mpi/ompi@e952ab1f88
NOTE: if visibility is enabled "make check" will fail
This commit was SVN r14668.
The following SVN revision numbers were found above:
r14667 --> open-mpi/ompi@1f526a95e9
when the size of the data is zero. Now they are not updated, which leave
us with the correct memory layout in all situations (so far). Update all
the comments to reflect exactly the supported behavior of the DDT engine.
This commit was SVN r14202.
computation of the current location on the pack/unpack process. This can
be used both for retrieving the pointer to the first byte (in the special
case of the cached RDMA protocol) and for getting the current
position (for the pipelined protocol).
I modified all BTLs, but most of them are still untested.
This commit was SVN r14180.