1
1
Граф коммитов

12 Коммитов

Автор SHA1 Сообщение Дата
Ralph Castain
22d7c0081a Fix the no-disconnect test by resolving a segfault on free - opal_dss.unload will return the remaining unpacked portion of a buffer. As such, it cannot return the pointer to that info as it might be partway inside of a malloc'd region. So copy the data out of the buffer. 2015-09-11 13:01:35 -07:00
Ralph Castain
a772b46c15 Bring the MPI_Publish and friends online 2015-09-02 12:04:07 -07:00
Ralph Castain
cf6137b530 Integrate PMIx 1.0 with OMPI.
Bring Slurm PMI-1 component online
Bring the s2 component online

Little cleanup - let the various PMIx modules set the process name during init, and then just raise it up to the ORTE level. Required as the different PMI environments all pass the jobid in different ways.

Bring the OMPI pubsub/pmi component online

Get comm_spawn working again

Ensure we always provide a cpuset, even if it is NULL

pmix/cray: adjust cray pmix component for pmix

Make changes so cray pmix can work within the integrated
ompi/pmix framework.

Bring singletons back online. Implement the comm_spawn operation using pmix - not tested yet

Cleanup comm_spawn - procs now starting, error in connect_accept

Complete integration
2015-08-29 16:04:10 -07:00
Ralph Castain
869041f770 Purge whitespace from the repo 2015-06-23 20:59:57 -07:00
Gilles Gouaillardet
16c8af6725 opal/dss: correctly handle incorrect parameter in opal_value_unload
this fixes previous commit open-mpi/ompi@f9b3fb442e
Thanks Ralph for the review !
2015-02-16 14:53:35 +09:00
Gilles Gouaillardet
f9b3fb442e opal/dss: correctly handle data==NULL in opal_value_unload 2015-02-16 14:40:42 +09:00
Ralph Castain
8faabed2cd Add some further initialization and protection for zero-byte messages
This commit was SVN r32644.
2014-08-29 17:24:55 +00:00
Ralph Castain
8736a1c138 Per RFC:
http://www.open-mpi.org/community/lists/devel/2014/05/14822.php

Revamp the ORTE global data structures to reduce memory footprint and add new features. Add ability to control/set cpu frequency, though this can only be done if the sys admin has setup the system to support it (or you run as root).

This commit was SVN r31916.
2014-06-01 16:14:10 +00:00
Ralph Castain
c4c9bc1573 As per the RFC:
http://www.open-mpi.org/community/lists/devel/2014/04/14496.php

Revamp the opal database framework, including renaming it to "dstore" to reflect that it isn't a "database". Move the "db" framework to ORTE for now, soon to move to ORCM

This commit was SVN r31557.
2014-04-29 21:49:23 +00:00
Ralph Castain
a200e4f865 As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***

Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.

***************************************************************************************

I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.

The code is in  https://bitbucket.org/rhc/ompi-oob2


WHAT:    Rewrite of ORTE OOB

WHY:       Support asynchronous progress and a host of other features

WHEN:    Wed, August 21

SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:

* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)

* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.

* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients

* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort

* only one transport (i.e., component) can be "active"


The revised OOB resolves these problems:

* async progress is used for all application processes, with the progress thread blocking in the event library

* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")

* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.

* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.

* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object

* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions

* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel

* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport

* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active

* all blocking send/recv APIs have been removed. Everything operates asynchronously.


KNOWN LIMITATIONS:

* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline

* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker

* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways

* obviously, not every error path has been tested nor necessarily covered

* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.

* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways

* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC

This commit was SVN r29058.
2013-08-22 16:37:40 +00:00
Ralph Castain
5e6928d710 Cleanup recursions in ORTE caused by processing recv'd messages that can cause the system to take action resulting in receipt of another message.
Basically, the method employed here is to have a recv create a zero-time timer event that causes the event library to execute a function that processes the message once the recv returns. Thus, any action taken as a result of processing the message occur outside of a recv.

Created two new macros to assist:

ORTE_MESSAGE_EVENT: creates the zero-time event, passing info in a new orte_message_event_t object

ORTE_PROGRESSED_WAIT: while waiting for specified conditions, just calls progress so messages can be recv'd.

Also fixed the failed_launch function as we no longer block in the orted callback function. Updated the error messages to reflect revision. No change in API to this function, but PLM "owners" may want to check their internal error messages to avoid duplication and excessive output.

This has been tested on Mac, TM, and SLURM.

This commit was SVN r17647.
2008-02-28 19:58:32 +00:00
Ralph Castain
d70e2e8c2b Merge the ORTE devel branch into the main trunk. Details of what this means will be circulated separately.
Remains to be tested to ensure everything came over cleanly, so please continue to withhold commits a little longer

This commit was SVN r17632.
2008-02-28 01:57:57 +00:00