This commit does two things. It removes checks for C99 required
headers (stdlib.h, string.h, signal.h, etc). Additionally it removes
definitions for required C99 types (intptr_t, int64_t, int32_t, etc).
Signed-off-by: Nathan Hjelm <hjelmn@me.com>
Changing the client to leave its socket as blocking during the connect doesn't solve the problem by itself - you also have to introduce a sleep delay once the backlog is hit to avoid simply machine-gunning your way thru retries. This gets somewhat difficult to adjust as you don't want to unnecessarily prolong startup time.
We've solved this before by adding a listening thread that simply reaps accepts and shoves them into the event library for subsequent processing. This would resolve the problem, but meant yet another daemon-level thread. So I centralized the listening thread support and let multiple elements register listeners on it. Thus, each daemon now has a single listening thread that reaps accepts from multiple sources - for now, the orte/pmix server and the oob/usock support are using it. I'll add in the oob/tcp component later.
This still didn't fully resolve the SMP problem, especially on coprocessor cards (e.g., KNC). Removing the shared memory dstore support helped further improve the behavior - it looks like there is some kind of memory paging issue there that needs further understanding. Given that the shared memory support was about to be lost when I bring over the PMIx integration (until it is restored in that library), it seemed like a reasonable thing to just remove it at this point.
A few uninitialized common symbols are remaining (generated by flex) :
* orte/mca/rmaps/rank_file/rmaps_rank_file_lex.c: orte_rmaps_rank_file_leng
* orte/mca/rmaps/rank_file/rmaps_rank_file_lex.c: orte_rmaps_rank_file_text
* orte/util/hostfile/hostfile_lex.c: orte_util_hostfile_leng
* orte/util/hostfile/hostfile_lex.c: orte_util_hostfile_text
Don't filter the topology by cpuset if you are mpirun until you know that no other compute nodes are involved. This deals with the corner case where mpirun is executing on a node of different topology from the compute nodes.
Simplify - don't mandate that all cpus in the given cpuset be present on every node. We can then run everything thru the filter as before, which ensures that any procs run on mpirun are also contained within the specified cpuset.
Correctly count the number of available PUs under each object when given a cpuset
Fix the default binding settings, and correctly count PUs when no cpuset is given
Ensure the binding policy gets set in all cases
Retain the hetero-nodes flag for those cases where the user *knows* that there are differences and our automated system isn't good enough to see it.
Will obviously require further refinement as we find out which variances it can detect, and which it cannot.
We recognize that this means other users of OPAL will need to "wrap" the opal_process_name_t if they desire to abstract it in some fashion. This is regrettable, and we are looking at possible alternatives that might mitigate that requirement. Meantime, however, we have to put the needs of the OMPI community first, and are taking this step to restore hetero and SPARC support.
These two macros set the MCA prefix and MCA cmd line id,
respectively. Specifically, MCA parameters will be named
PREFIX<foo> in the environment, and the cmd line will use
-ID foo bar.
These macros must be called during configure.ac and a value
supplied. In the case of Open MPI, the values given are
PREFIX=OMPI_MCA_ and ID=mca.
Other projects (such as ORCM) will call these macros with
their own unique values. For example, ORCM uses PREFIX=ORCM_MCA_
and ID=omca
This scheme is necessary to allow running Open MPI applications under
systems that use their own versions of ORTE and OPAL. For example,
when running OMPI applications under ORCM, we need the MCA params passed
to the ORCM daemons to be separated from those recognized by the OMPI application.
These two macros set the prefix for the OPAL and ORTE libraries,
respectively. Specifically, the OPAL library will be named
libPREFIXopen-pal.la and the ORTE library will be named
libPREFIXopen-rte.la.
These macros must be called, even if the prefix argument is empty.
The intent is that Open MPI will call these macros with an empty
prefix, but other projects (such as ORCM) will call these macros with
a non-empty prefix. For example, ORCM libraries can be named
liborcm-open-pal.la and liborcm-open-rte.la.
This scheme is necessary to allow running Open MPI applications under
systems that use their own versions of ORTE and OPAL. For example,
when running MPI applications under ORTE, if the ORTE and OPAL
libraries between OMPI and ORCM are not identical (which, because they
are released at different times, are likely to be different), we need
to ensure that the OMPI applications link against their ORTE and OPAL
libraries, but the ORCM executables link against their ORTE and OPAL
libraries.
the OPAL and ORTE libraries. This is required by projects such as ORCM
that have their own ORTE and OPAL libraries in order to avoid library
confusion. By renaming their version of the libraries, the OMPI
applications can correctly dynamically load the correct one for their
build."
This reverts commit 63f619f871.