Samples are taken after MPI_Init, and then again after MPI_Barrier. This allows the user to see memory consumption caused by add_procs, as well as any modex contribution from forming connections if pmix_base_async_modex is given.
Using the probe simply involves executing it via mpirun, with however many copies you want per node. Example:
$ mpirun -npernode 2 ./mpi_memprobe
Sampling memory usage after MPI_Init
Data for node rhc001
Daemon: 12.483398
Client: 6.514648
Data for node rhc002
Daemon: 11.865234
Client: 4.643555
Sampling memory usage after MPI_Barrier
Data for node rhc001
Daemon: 12.520508
Client: 6.576660
Data for node rhc002
Daemon: 11.879883
Client: 4.703125
Note that the client value on node rhc001 is larger - this is where rank=0 is housed, and apparently it gets a larger footprint for some reason.
Signed-off-by: Ralph Castain <rhc@open-mpi.org>
Revamp the event notification integration to rely on the PMIx event chaining and remove the duplicate chaining in OPAL. This ensures we get system-level events that target non-default handlers.
Restore the hostname entries for MPI-level error messages, but provide an MCA param (orte_hostname_cutoff) to remove them for large clusters where the memory footprint is problematic. Set the default at 1000 nodes in the job (not the allocation).
Begin first cut at memory profiler
Some minor cleanups of memprobe
Signed-off-by: Ralph Castain <rhc@open-mpi.org>