The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
* General TCP cleanup for OPAL / ORTE
* Simplifying the OOB by moving much of the logic into the RML
* Allowing the OOB RML component to do routing of messages
* Adding a component framework for handling routing tables
* Moving the xcast functionality from the OOB base to its own framework
Includes merge from tmp/bwb-oob-rml-merge revisions:
r15506, r15507, r15508, r15510, r15511, r15512, r15513
This commit was SVN r15528.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r15506
r15507
r15508
r15510
r15511
r15512
r15513
Cleanup ALL instances of output involving the printing of orte_process_name_t structures using the ORTE_NAME_ARGS macro so that the number of fields and type of data match. Replace those values with a new macro/function pair ORTE_NAME_PRINT that outputs a string (using the new thread safe data capability) so that any future changes to the printing of those structures can be accomplished with a change to a single point.
Note that I could not possibly find outputs that directly print the orte_process_name_t fields, but only dealt with those that used ORTE_NAME_ARGS. Hence, you may still have a few outputs that bark during compilation. Also, I could only verify those that fall within environments I can compile on, so other environments may yield some minor warnings.
This commit was SVN r15517.
Short description: major changes include -
1. singletons now fork/exec a local daemon to manage their operations.
2. the orte daemon code now resides in libopen-rte
3. daemons no longer use the orte triggering system during startup. Instead, they directly call back to their parent pls component to report ready to operate. A base function to count the callbacks has been provided.
I have modified all the pls components except xcpu and poe (don't understand either well enough to do it). Full functionality has been verified for rsh, SLURM, and TM systems. Compile has been verified for xgrid and gridengine.
This commit was SVN r15390.
The primary change that underlies all this is in the OOB. Specifically, the problem in the code until now has been that the OOB attempts to resolve an address when we call the "send" to an unknown recipient. The OOB would then wait forever if that recipient never actually started (and hence, never reported back its OOB contact info). In the case of an orted that failed to start, we would correctly detect that the orted hadn't started, but then we would attempt to order all orteds (including the one that failed to start) to die. This would cause the OOB to "hang" the system.
Unfortunately, revising how the OOB resolves addresses introduced a number of additional problems. Specifically, and most troublesome, was the fact that comm_spawn involved the immediate transmission of the rendezvous point from parent-to-child after the child was spawned. The current code used the OOB address resolution as a "barrier" - basically, the parent would attempt to send the info to the child, and then "hold" there until the child's contact info had arrived (meaning the child had started) and the send could be completed.
Note that this also caused comm_spawn to "hang" the entire system if the child never started... The app-failed-to-start helped improve that behavior - this code provides additional relief.
With this change, the OOB will return an ADDRESSEE_UNKNOWN error if you attempt to send to a recipient whose contact info isn't already in the OOB's hash tables. To resolve comm_spawn issues, we also now force the cross-sharing of connection info between parent and child jobs during spawn.
Finally, to aid in setting triggers to the right values, we introduce the "arith" API for the GPR. This function allows you to atomically change the value in a registry location (either divide, multiply, add, or subtract) by the provided operand. It is equivalent to first fetching the value using a "get", then modifying it, and then putting the result back into the registry via a "put".
This commit was SVN r14711.
* Remove the connect() timeout code, as it had some nasty race conditions
when connections were established as the trigger was firing. A better
solution has been found for the cluster where this was needed, so just
removing it was easiest.
* When a fatal error (too many connection failures) occurs, set an error
on messages in the queue even if there isn't an active message. The
first message to any peer will be queued without being active (and
so will all subsequent messages until the connection is established),
and the orteds will hang until that first message completes. So if
an orted can never contact it's peer, it will never exit and just sit
waiting for that message to complete.
* Cover an interesting RST condition in the connect code. A connection
can complete the three-way handshake, the connector can even send
some data, but the server side will drop the connection because it
can't move it from the half-connected to fully-connected state because
of space shortage in the listen backlog queue. This causes a RST to
be received first time that recv() is called, which will be when waiting
for the remote side of the OOB ack. In this case, transition the
connection back into a CLOSED state and try to connect again.
* Add levels of debugging, rather than all or nothing, each building on
the previous level. 0 (default) is hard errors. 1 is connection
error debugging info. 2 is all connection info. 3 is more state
info. 4 includes all message info.
* Add some hopefully useful comments
This commit was SVN r14261.
This merge adds Checkpoint/Restart support to Open MPI. The initial
frameworks and components support a LAM/MPI-like implementation.
This commit follows the risk assessment presented to the Open MPI core
development group on Feb. 22, 2007.
This commit closes trac:158
More details to follow.
This commit was SVN r14051.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r13912
The following Trac tickets were found above:
Ticket 158 --> https://svn.open-mpi.org/trac/ompi/ticket/158
Accordingly, there are new APIs to the name service to support the ability to get a job's parent, root, immediate children, and all its descendants. In addition, the terminate_job, terminate_orted, and signal_job APIs for the PLS have been modified to accept attributes that define the extent of their actions. For example, doing a "terminate_job" with an attribute of ORTE_NS_INCLUDE_DESCENDANTS will terminate the given jobid AND all jobs that descended from it.
I have tested this capability on a MacBook under rsh, Odin under SLURM, and LANL's Flash (bproc). It worked successfully on non-MPI jobs (both simple and including a spawn), and MPI jobs (again, both simple and with a spawn).
This commit was SVN r12597.
- move files out of toplevel include/ and etc/, moving it into the
sub-projects
- rather than including config headers with <project>/include,
have them as <project>
- require all headers to be included with a project prefix, with
the exception of the config headers ({opal,orte,ompi}_config.h
mpi.h, and mpif.h)
This commit was SVN r8985.