Only one place used the user name field - session_dir, when formulating the name of the top-level directory. Accordingly, the code for getting the user's id has been moved to the session_dir code.
This commit was SVN r17926.
high prio QPs and low prio QPs) and because not all of them are polled each time
progrgess() is called (to save on latency) starvation is possible. The commit
fixes this. Now each channel is polled, but higher priority channels are polled
more often. Three new parameters are introduced that control polling ratios
between different channels.
This commit was SVN r17024.
mca_btl_openib_mca_setup_qps(). It looks like someone just forgot to
clean-up the previous call when they added the check for the return
code.
I ran a quick IMB test over IB to verify everything is still working.
This commit was SVN r16870.
parameters don't make any sense. Credits are never piggybacked. Also make
default queue sizes to be calculated from eager_limit and max_send_size values.
This commit was SVN r16816.
to a pending queue of eager rdma QP instead of correct pending list. This patch
fixes this by getting reed of "eager rdma qp" notion. Packet is always send
over its order QP. The patch also adds two pending queues for high and low prio
packets. Only high prio packets are sent over eager RDMA channel.
This commit was SVN r16780.
meaning "infinite") is no longer larger than the minimum required
size. So put in an appropriate test to ensure that "infinite" was not
requested.
This commit was SVN r16142.
you'll get a helpful error message and the openib BTL will deactivate
itself.
This commit was SVN r16133.
The following Trac tickets were found above:
Ticket 1133 --> https://svn.open-mpi.org/trac/ompi/ticket/1133
the ompi_convertor_need_buffers function to only return 0 if the convertor
is homogeneous (which it never does on the trunk, but does to on v1.2, but
that's a different issue). Only enable the heterogeneous rdma code for
a btl if it supports it (via a flag), as some btls need some work for this
to work properly. Currently only TCP and OpenIB extensively tested
This commit was SVN r15990.
semicolons but the new specitifcation string used colons. The text
parser now looks for colons.
* Changed all opal_output() error messages to
much-more-helpful/descriptive opal_show_help() messages.
* A few minor style/indenting fixes
This commit was SVN r15850.
The following SVN revision numbers were found above:
r15848 --> open-mpi/ompi@dd30597f39
/tmp/jms-modular-wireup branch):
* This commit moves all the openib BTL connection code out of
btl_openib_endpoint.c and into a connect "pseudo-component" area,
meaning that different schemes for doing OFA connection schemes can
be chosen via function pointer (i.e., MCA parameter) at run-time.
* The connect/connect.h file includes comments describing the
specific interface for the connect pseudo-component.
* Two pseudo-components are in this commit (more can certainly be
added).
* oob: use the same old oob/rml scheme for creating OFA connections
that we've had forever; this now just puts the logic into this
self-contained pseudo-component.
* rdma_cm: a currently-empty set of functions (that currently
return NOT_IMPLEMENTED) that will someday use the RDMA connection
manager to make OFA connections.
This commit was SVN r15786.
1. Galen's fine-grain control of queue pair resources in the openib
BTL.
1. Pasha's new implementation of asychronous HCA event handling.
Pasha's new implementation doesn't take much explanation, but the new
"multifrag" stuff does.
Note that "svn merge" was not used to bring this new code from the
/tmp/ib_multifrag branch -- something Bad happened in the periodic
trunk pulls on that branch making an actual merge back to the trunk
effectively impossible (i.e., lots and lots of arbitrary conflicts and
artifical changes). :-(
== Fine-grain control of queue pair resources ==
Galen's fine-grain control of queue pair resources to the OpenIB BTL
(thanks to Gleb for fixing broken code and providing additional
functionality, Pasha for finding broken code, and Jeff for doing all
the svn work and regression testing).
Prior to this commit, the OpenIB BTL created two queue pairs: one for
eager size fragments and one for max send size fragments. When the
use of the shared receive queue (SRQ) was specified (via "-mca
btl_openib_use_srq 1"), these QPs would use a shared receive queue for
receive buffers instead of the default per-peer (PP) receive queues
and buffers. One consequence of this design is that receive buffer
utilization (the size of the data received as a percentage of the
receive buffer used for the data) was quite poor for a number of
applications.
The new design allows multiple QPs to be specified at runtime. Each
QP can be setup to use PP or SRQ receive buffers as well as giving
fine-grained control over receive buffer size, number of receive
buffers to post, when to replenish the receive queue (low water mark)
and for SRQ QPs, the number of outstanding sends can also be
specified. The following is an example of the syntax to describe QPs
to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues:
{{{
-mca btl_openib_receive_queues \
"P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32"
}}}
Each QP description is delimited by ";" (semicolon) with individual
fields of the QP description delimited by "," (comma). The above
example therefore describes 4 QPs.
The first QP is:
P,128,16,4
Meaning: per-peer receive buffer QPs are indicated by a starting field
of "P"; the first QP (shown above) is therefore a per-peer based QP.
The second field indicates the size of the receive buffer in bytes
(128 bytes). The third field indicates the number of receive buffers
to allocate to the QP (16). The fourth field indicates the low
watermark for receive buffers at which time the BTL will repost
receive buffers to the QP (4).
The second QP is:
S,1024,256,128,32
Shared receive queue based QPs are indicated by a starting field of
"S"; the second QP (shown above) is therefore a shared receive queue
based QP. The second, third and fourth fields are the same as in the
per-peer based QP. The fifth field is the number of outstanding sends
that are allowed at a given time on the QP (32). This provides a
"good enough" mechanism of flow control for some regular communication
patterns.
QPs MUST be specified in ascending receive buffer size order. This
requirement may be removed prior to 1.3 release.
This commit was SVN r15474.
branch:
* Support btl_openib_if_include and btl_openib_if_exclude MCA
parameters, similar to those supported by other BTLs. Each take a
comma-delimited lists of identifiers. Identifiers can be HCA
interface names (e.g., ipath0, mthca1, etc.) or an HCA interface
name and port numbers (e.g., ipath0:1, mthca1:2, etc.). It is an
error to specify both _include and _exclude. If you specify a
non-existant (or non-ACTIVE) HCA and/or port, you'll get a warning
unless you disable the warning by setting the MCA parameter
btl_openib_warn_nonexistent_if to 0.
* Start updating to use BEGIN_C_DECLS and END_C_DECLS
* A few other minor fixes that were picked up along the way.
This commit was SVN r15063.
We eagerly send data up to btl_*_eager_limit with the match
Upon ACK of the MATCH we start using send/receives of size
btl_*_max_send_size up to the btl_*_rdma_pipeline_offset
After the btl_*_rdma_pipeline_offset we begin using RDMA writes of
size btl_*_rdma_pipeline_frag_size.
Now, on a per message basis we only use the above protocol if the
message is larger than btl_*_min_rdma_pipeline_size
btl_*_eager_limit - > same
btl_*_max_send_size -> same
btl_*_rdma_pipeline_offset -> btl_*_min_rdma_size
btl_*_rdma_pipeline_frag_size -> btl_*_max_rdma_size
btl_*_min_rdma_pipeline_size is new..
This patch also moves all BTL common parameters initialisation into
btl_base_mca.c file.
This commit was SVN r14681.
finally brings in functionality that is already on the 1.2 branch, and
was developed and tested in the v1.2ofed branch (and other places).
Short version of new features:
* Support for ibv_fork_init()
* Automatically fill in the openib BTL bandwidth value by
querying the HCA port
* Installdirs functionality
* Fixes to always use -I in the Fortran wrapper compilers (#924)
* Gleb's mpool updates
* Remove some kruft in btl/openib/configure.m4, therefore
fixing the harmless warnings noted in #665
* Bunches of updates to the Linux RPM spec file
I.e., effectively the same thing that r14411 brought to the v1.2
branch.
Also effectively brought in r14432 and r14433 (some fixes on top of
the original r14411 commit to v1.2). Still need to bring in the moral
equivalent of r14445 after this commit (fixes to installdirs).
This commit was SVN r14449.
The following SVN revision numbers were found above:
r14411 --> open-mpi/ompi@83b31314ae
r14432 --> open-mpi/ompi@a48f160595
r14433 --> open-mpi/ompi@68f346d2bc
r14445 --> open-mpi/ompi@13d366b827
allocated from mpool memory (which is registered memory for RDMA transports)
This is not a problem for a small jobs, but for a big number of ranks an
amount of waisted memory is big.
This commit was SVN r13921.
udapl/openib/vapi/gm mpools a deprecated. rdma mpool has parameter that allows
to limit its size mpool_rdma_rcache_size_limit (default is 0 - unlimited).
This commit was SVN r12878.