when profiling is built.
This prevents oshmem subroutines from being wrapped twice by third
party tools (e.g. once in oshmem and once in MPI)
see discussion starting at http://www.open-mpi.org/community/lists/devel/2015/08/17842.php
Thanks to Bert Wesarg for bringing this to our attention
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
OMPI_* to OPAL_*. This allows opal layer to be used more independent
from the whole of ompi.
NOTE: 9 "svn mv" operations immediately follow this commit.
This commit was SVN r21180.
- Delete unnecessary header files using
contrib/check_unnecessary_headers.sh after applying
patches, that include headers, being "lost" due to
inclusion in one of the now deleted headers...
In total 817 files are touched.
In ompi/mpi/c/ header files are moved up into the actual c-file,
where necessary (these are the only additional #include),
otherwise it is only deletions of #include (apart from the above
additions required due to notifier...)
- To get different MCAs (OpenIB, TM, ALPS), an earlier version was
successfully compiled (yesterday) on:
Linux locally using intel-11, gcc-4.3.2 and gcc-SVN + warnings enabled
Smoky cluster (x86-64 running Linux) using PGI-8.0.2 + warnings enabled
Lens cluster (x86-64 running Linux) using Pathscale-3.2 + warnings enabled
This commit was SVN r21096.
Some MPI C interface files saw some spacing changes to conform to the coding standards of Open MPI.
Changed MPI C interface files to use {{{OPAL_CR_ENTER_LIBRARY()}}} and {{{OPAL_CR_EXIT_LIBRARY()}}} instead of just {{{OPAL_CR_TEST_CHECKPOINT_READY()}}}. This will allow the checkpoint/restart system more flexibility in how it is to behave.
Fixed the configure check for {{{--enable-ft-thread}}} so it has a know dependance on {{{--enable-mpi-thread}}} (and/or {{{--enable-progress-thread}}}).
Added a line for Checkpoint/Restart support to {{{ompi_info}}}.
Added some options to choose at runtime whether or not to use the checkpoint polling thread. By default, if the user asked for it to be compiled in, then it is used. But some users will want the ability to toggle its use at runtime.
There are still some places for improvement, but the feature works correctly. As always with Checkpoint/Restart, it is compiled out unless explicitly asked for at configure time. Further, if it was configured in, then it is not used unless explicitly asked for by the user at runtime.
This commit was SVN r17516.
(sometimes after the merge with the ORTE branch), the opal_pointer_array
will became the only pointer_array implementation (the orte_pointer_array
will be removed).
This commit was SVN r17007.
This merge adds Checkpoint/Restart support to Open MPI. The initial
frameworks and components support a LAM/MPI-like implementation.
This commit follows the risk assessment presented to the Open MPI core
development group on Feb. 22, 2007.
This commit closes trac:158
More details to follow.
This commit was SVN r14051.
The following SVN revisions from the original message are invalid or
inconsistent and therefore were not cross-referenced:
r13912
The following Trac tickets were found above:
Ticket 158 --> https://svn.open-mpi.org/trac/ompi/ticket/158
handling of invalid Fortran handles. Per MPI-2:4.12.4, if we get an
invalid Fortran handle, we should return an invalid C handle. Before
this commit, we checked if the fortran handle index was out of range
(i.e., <0 or >sizeof(array)). If so, we used to return MPI_*_NULL
(i.e., a valid C handle). But to be faithful to MPI-2:4.12.4, we
now return NULL (an invalid C handle).
If the fortran index is in bounds but is an index for an MPI object
that has already been freed, the code already returns NULL because the
entry in the array will be NULL (i.e., we already did what
MPI-2:4.12.4 said for this case).
Hence, this commit makes the handling of invalid fortran handles in
the MPI_*_F2C functions be uniform: we always return NULL.
Commit 2 of this will be to edit just about every C interface function
(!) to ensure that MPI handles are not NULL. Otherwise, if the user
calls a fortran interface function with an invalid handle, the fortran
interface function will call MPI_*_F2C and blindly pass the result to
the back-end C function. The C function will eventually end up trying
to dereference it -- segv. Having a run-time check for NULL and
invoking an MPI exception is far more social (e.g., the user can get a
stack trace out of MPI_ABORT) and consistent (i.e., we're already
checking for MPI_*_NULL in the C interface functions).
Since all the C interface functions have all the machinery for
run-time parameter checking, and they all already check for
MPI_*_NULL, it's easy enough to add another check for NULL.
This commit was SVN r9560.
- move files out of toplevel include/ and etc/, moving it into the
sub-projects
- rather than including config headers with <project>/include,
have them as <project>
- require all headers to be included with a project prefix, with
the exception of the config headers ({opal,orte,ompi}_config.h
mpi.h, and mpif.h)
This commit was SVN r8985.