This commit updates the ugni btl to make use of multiple device
contexts to improve the multi-threaded RMA performance. This commit
contains the following:
- Cleanup the endpoint structure by removing unnecessary field. The
structure now also contains all the fields originally handled by the
common/ugni endpoint.
- Clean up the fragment allocation code to remove the need to
initialize the my_list member of the fragment structure. This
member is not initialized by the free list initializer function.
- Remove the (now unused) common/ugni component. btl/ugni no longer
need the component. common/ugni was originally split out of
btl/ugni to support bcol/ugni. As that component exists there is no
reason to keep this component.
- Create wrappers for the ugni functionality required by
btl/ugni. This was done to ease supporting multiple device
contexts. The wrappers are thread safe and currently use a spin
lock instead of a mutex. This produces better performance when
using multiple threads spread over multiple cores. In the future
this lock may be replaced by another serialization mechanism. The
wrappers are located in a new file: btl_ugni_device.h.
- Remove unnecessary device locking from serial parts of the ugni
btl. This includes the first add-procs and module finalize.
- Clean up fragment wait list code by moving enqueue into common
function.
- Expose the communication domain flags as an MCA variable. The
defaults have been updated to reflect the recommended setting for
knl and haswell.
- Avoid allocating fragments for communication with already
overloaded peers.
- Allocate RDMA endpoints dyncamically. This is needed to support
spreading RMA operations accross multiple contexts.
- Add support for spreading RMA communication over multiple ugni
device contexts. This should greatly improve the threading
performance when communicating with multiple peers. By default the
number of virtual devices depends on 1) whether
opal_using_threads() is set, 2) how many local processes are in the
job, and 3) how many bits are available in the pid. The last is
used to ensure that each CDM is created with a unique id.
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
This commit rewrites both the mpool and rcache frameworks. Summary of
changes:
- Before this change a significant portion of the rcache
functionality lived in mpool components. This meant that it was
impossible to add a new memory pool to use with rdma networks
(ugni, openib, etc) without duplicating the functionality of an
existing mpool component. All the registration functionality has
been removed from the mpool and placed in the rcache framework.
- All registration cache mpools components (udreg, grdma, gpusm,
rgpusm) have been changed to rcache components. rcaches are
allocated and released in the same way mpool components were.
- It is now valid to pass NULL as the resources argument when
creating an rcache. At this time the gpusm and rgpusm components
support this. All other rcache components require non-NULL
resources.
- A new mpool component has been added: hugepage. This component
supports huge page allocations on linux.
- Memory pools are now allocated using "hints". Each mpool component
is queried with the hints and returns a priority. The current hints
supported are NULL (uses posix_memalign/malloc), page_size=x (huge
page mpool), and mpool=x.
- The sm mpool has been moved to common/sm. This reflects that the sm
mpool is specialized and not meant for any general
allocations. This mpool may be moved back into the mpool framework
if there is any objection.
- The opal_free_list_init arguments have been updated. The unused0
argument is not used to pass in the registration cache module. The
mpool registration flags are now rcache registration flags.
- All components have been updated to make use of the new framework
interfaces.
As this commit makes significant changes to both the mpool and rcache
frameworks both versions have been bumped to 3.0.0.
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
This commit adds a access_flags argument to the mpool registration
function. This flag indicates what kind of access is being requested:
local write, remote read, remote write, and remote atomic. The values
of the registration access flags in the btl are tied to the new flags
in the mpool. All mpools have been updated to include the new argument
but only the grdma and udreg mpools have been updated to make use of
the access flags. In both mpools existing registrations are checked
for sufficient access before being returned. If a registration does
not contain sufficient access it is marked as invalid and a new
registration is generated.
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
structure
This structure member was originally used to specify the remote segment
for an RDMA operation. Since the new btl interface no longer uses
desriptors for RDMA this member no longer has a purpose. In addition
to removing these members the local segment information has been
renamed to des_segments/des_segment_count.
The old BTL interface provided support for RDMA through the use of
the btl_prepare_src and btl_prepare_dst functions. These functions were
expected to prepare as much of the user buffer as possible for the RDMA
operation and return a descriptor. The descriptor contained segment
information on the prepared region. The btl user could then pass the
RDMA segment information to a remote peer. Once the peer received that
information it then packed it into a similar descriptor on the other
side that could then be passed into a single btl_put or btl_get
operation.
Changes:
- Removed the btl_prepare_dst function. This reflects the fact that
RDMA operations no longer depend on "prepared" descriptors.
- Removed the btl_seg_size member. There is no need to btl's to
subclass the mca_btl_base_segment_t class anymore.
...
Add more
WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL
All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic.
This commit was SVN r32317.