These two macros set the MCA prefix and MCA cmd line id,
respectively. Specifically, MCA parameters will be named
PREFIX<foo> in the environment, and the cmd line will use
-ID foo bar.
These macros must be called during configure.ac and a value
supplied. In the case of Open MPI, the values given are
PREFIX=OMPI_MCA_ and ID=mca.
Other projects (such as ORCM) will call these macros with
their own unique values. For example, ORCM uses PREFIX=ORCM_MCA_
and ID=omca
This scheme is necessary to allow running Open MPI applications under
systems that use their own versions of ORTE and OPAL. For example,
when running OMPI applications under ORCM, we need the MCA params passed
to the ORCM daemons to be separated from those recognized by the OMPI application.
When using the native aprun launcher, it was observed that
there were frequent memory corruption errors occuring either
during a PMI kvs-fence operation, or at mpi termation during
opal cleanup of allocated objects. This was especially bad
when using
aprun --c none
In some cases, the application would even just hang in finalize
if using ptmalloc, owing to some kind of infinite loop in
cleanup of small blocks, etc.
It turns out that the proble was in orte_ess_base_proc_binding's
improper use of opal_hwloc_base_get_available_cpus. The cpuset
(bitmap) returned from that function is not meant to be freed
by the caller.
This problem is likely never observed when using the mpirun launcher
as there's an early exit if the OMPI_MCA_orte_bound_at_launch
environment variable is set.
This commit was SVN r32809.
WHAT: Merge the PMIx branch into the devel repo, creating a new
OPAL “lmix” framework to abstract PMI support for all RTEs.
Replace the ORTE daemon-level collectives with a new PMIx
server and update the ORTE grpcomm framework to support
server-to-server collectives
WHY: We’ve had problems dealing with variations in PMI implementations,
and need to extend the existing PMI definitions to meet exascale
requirements.
WHEN: Mon, Aug 25
WHERE: https://github.com/rhc54/ompi-svn-mirror.git
Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding.
All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level.
Accordingly, we have:
* created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations.
* Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported.
* Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint
* removed the prior OMPI/OPAL modex code
* added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform.
* retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand
This commit was SVN r32570.
http://www.open-mpi.org/community/lists/devel/2014/04/14496.php
Revamp the opal database framework, including renaming it to "dstore" to reflect that it isn't a "database". Move the "db" framework to ORTE for now, soon to move to ORCM
This commit was SVN r31557.
This provides full locality - i.e., not just node-level, but all the way down to whatever common binding level exists between the procs.
cmr=v1.7.5:reviewer=jsquyres
This commit was SVN r31106.
Update all the orte ess components to remove their associated APIs for retrieving proc data. Update the grpcomm API to reflect transfer of set/get modex info to the db framework.
Note that this doesn't recreate the old GPR. This is strictly a local db storage that may (at some point) obtain any missing data from the local daemon as part of an async methodology. The framework allows us to experiment with such methods without perturbing the default one.
This commit was SVN r26678.
* Remove paffinity, maffinity, and carto frameworks -- they've been
wholly replaced by hwloc.
* Move ompi_mpi_init() affinity-setting/checking code down to ORTE.
* Update sm, smcuda, wv, and openib components to no longer use carto.
Instead, use hwloc data. There are still optimizations possible in
the sm/smcuda BTLs (i.e., making multiple mpools). Also, the old
carto-based code found out how many NUMA nodes were ''available''
-- not how many were used ''in this job''. The new hwloc-using
code computes the same value -- it was not updated to calculate how
many NUMA nodes are used ''by this job.''
* Note that I cannot compile the smcuda and wv BTLs -- I ''think''
they're right, but they need to be verified by their owners.
* The openib component now does a bunch of stuff to figure out where
"near" OpenFabrics devices are. '''THIS IS A CHANGE IN DEFAULT
BEHAVIOR!!''' and still needs to be verified by OpenFabrics vendors
(I do not have a NUMA machine with an OpenFabrics device that is a
non-uniform distance from multiple different NUMA nodes).
* Completely rewrite the OMPI_Affinity_str() routine from the
"affinity" mpiext extension. This extension now understands
hyperthreads; the output format of it has changed a bit to reflect
this new information.
* Bunches of minor changes around the code base to update names/types
from maffinity/paffinity-based names to hwloc-based names.
* Add some helper functions into the hwloc base, mainly having to do
with the fact that we have the hwloc data reporting ''all''
topology information, but sometimes you really only want the
(online | available) data.
This commit was SVN r26391.
Roll in the ORTE state machine. Remove last traces of opal_sos. Remove UTK epoch code.
Please see the various emails about the state machine change for details. I'll send something out later with more info on the new arch.
This commit was SVN r26242.
Use hwloc to obtain the cpuset for each process during mpi_init, and share that info in the modex. As it arrives, use a new opal_hwloc_base utility function to parse the value against the local proc's cpuset and determine where they overlap. Cache the value in the pmap object as it may be referenced multiple times.
Thus, the return value from orte_ess.proc_get_locality is a 16-bit bitmask that describes the resources being shared with you. This bitmask can be tested using the macros in opal/mca/paffinity/paffinity.h
Locality is available for all procs, whether launched via mpirun or directly with an external launcher such as slurm or aprun.
This commit was SVN r25331.