A few changes were required to support this move:
1. the PMI component used to identify rte-related data (e.g., host name, bind level) and package them as a unit to reduce the number of PMI keys. This code was moved up to the ORTE layer as the OPAL layer has no understanding of these concepts. In addition, the component locally stored data based on process jobid/vpid - this could no longer be supported (see below for the solution).
2. the hash component was updated to use the new opal_identifier_t instead of orte_process_name_t as its index for storing data in the hash tables. Previously, we did a hash on the vpid and stored the data in a 32-bit hash table. In the revised system, we don't see a separate "vpid" field - we only have a 64-bit opaque value. The orte_process_name_t hash turned out to do nothing useful, so we now store the data in a 64-bit hash table. Preliminary tests didn't show any identifiable change in behavior or performance, but we'll have to see if a move back to the 32-bit table is required at some later time.
3. the db framework was a "select one" system. However, since the PMI component could no longer use its internal storage system, the framework has now been changed to a "select many" mode of operation. This allows the hash component to handle all internal storage, while the PMI component only handles pushing/pulling things from the PMI system. This was something we had planned for some time - when fetching data, we first check internal storage to see if we already have it, and then automatically go to the global system to look for it if we don't. Accordingly, the framework was provided with a custom query function used during "select" that lets you seperately specify the "store" and "fetch" ordering.
4. the ORTE grpcomm and ess/pmi components, and the nidmap code, were updated to work with the new db framework and to specify internal/global storage options.
No changes were made to the MPI layer, except for modifying the ORTE component of the OMPI/rte framework to support the new db framework.
This commit was SVN r28112.
Add hooks for supporting dynamic allocation and deallocation to support application-driven requests and fault recovery operations.
This commit was SVN r27879.
So (finally) consolidate these two fields into one "slots" field. Add a field in orte_job_t to indicate when all the procs for a job will be launched together, so that staged operations can know when MPI operations are allowed.
This commit was SVN r27239.
For those nodes (and *only* those nodes) where the user does *not* specify a slot count, we will set the number of slots according to their direction: either to the number of cores, numas, sockets, or hwthreads. Otherwise, the slot count is set to 1.
Note that the default behavior remains unchanged: in the absence of any value for #slots, and in the absence of any directive to set #slots, we will set #slots=1.
This commit was SVN r27236.
Remove some stale configure.m4's we no longer need.
Optimize the nidmaps a bit by only sending info that has changed each time, instead of sending a complete copy of everything. Makes no difference for the typical MPI job - only impacts things like staged execution where we are sending multiple (possibly many) launch messages.
This commit was SVN r27165.
"num_app_ctx" - the number of app_contexts in the job
"first_rank" - the MPI rank of the first process in each app_context
"np" - the number of procs in each app_context
Still need clarification on the MPI_Init portion of the ticket. Specifically, does the ticket call for returning an error is someone calls MPI_Init more than once in a program? We set a flag to tell us that we have been initialized, but currently never check it.
This commit was SVN r27005.
Update all the orte ess components to remove their associated APIs for retrieving proc data. Update the grpcomm API to reflect transfer of set/get modex info to the db framework.
Note that this doesn't recreate the old GPR. This is strictly a local db storage that may (at some point) obtain any missing data from the local daemon as part of an async methodology. The framework allows us to experiment with such methods without perturbing the default one.
This commit was SVN r26678.
Restore enable-static-ports option by default - the Cray will have to disable it to get around their library issues, but that's just a warning problem as opposed to blocking the build.
This commit was SVN r26606.
* Remove paffinity, maffinity, and carto frameworks -- they've been
wholly replaced by hwloc.
* Move ompi_mpi_init() affinity-setting/checking code down to ORTE.
* Update sm, smcuda, wv, and openib components to no longer use carto.
Instead, use hwloc data. There are still optimizations possible in
the sm/smcuda BTLs (i.e., making multiple mpools). Also, the old
carto-based code found out how many NUMA nodes were ''available''
-- not how many were used ''in this job''. The new hwloc-using
code computes the same value -- it was not updated to calculate how
many NUMA nodes are used ''by this job.''
* Note that I cannot compile the smcuda and wv BTLs -- I ''think''
they're right, but they need to be verified by their owners.
* The openib component now does a bunch of stuff to figure out where
"near" OpenFabrics devices are. '''THIS IS A CHANGE IN DEFAULT
BEHAVIOR!!''' and still needs to be verified by OpenFabrics vendors
(I do not have a NUMA machine with an OpenFabrics device that is a
non-uniform distance from multiple different NUMA nodes).
* Completely rewrite the OMPI_Affinity_str() routine from the
"affinity" mpiext extension. This extension now understands
hyperthreads; the output format of it has changed a bit to reflect
this new information.
* Bunches of minor changes around the code base to update names/types
from maffinity/paffinity-based names to hwloc-based names.
* Add some helper functions into the hwloc base, mainly having to do
with the fact that we have the hwloc data reporting ''all''
topology information, but sometimes you really only want the
(online | available) data.
This commit was SVN r26391.
Fix the state machine to support multiple jobs being simultaneously launched as this is not only required for mapreduce, but can happen under comm-spawn applications as well.
This commit was SVN r26380.
Roll in the ORTE state machine. Remove last traces of opal_sos. Remove UTK epoch code.
Please see the various emails about the state machine change for details. I'll send something out later with more info on the new arch.
This commit was SVN r26242.
Detect the addition of fqdn nodes in the allocation. If not found, then strip all incoming hostnames from daemons of any domain info when matching those names against the names in the node pool.
Leave some protection and "live" diagnostic output in place so we can continue to detect problems across all environments.
This commit was SVN r25557.
Turns out, this isn't necessarily true. The Cray, for example, launches processes in a toroidal pattern, thus causing the daemons to wind up somewhere other than what we thought. Other environments (e.g., slurm) are also capable of such behavior, depending upon the default mapping algorithm they are told to use.
Resolve this problem by making the daemon-to-node assignment in the affected environments when the daemon calls back and tells us what node it is on. Order the nodes in the mapping list so they are in daemon-vpid order as opposed to the order in which they show in the allocation. For environments that don't exhibit this mapping behavior (e.g., rsh), this won't have any impact.
Also, clean up the vm launch procedure a little bit so it more closely aligns with the state machine implementation that is coming, and remove some lingering "slave" code.
This commit was SVN r25551.
https://svn.open-mpi.org/trac/ompi/wiki/ProcessPlacement
The wiki page is incomplete at the moment, but I hope to complete it over the next few days. I will provide updates on the devel list. As the wiki page states, the default and most commonly used options remain unchanged (except as noted below). New, esoteric and complex options have been added, but unless you are a true masochist, you are unlikely to use many of them beyond perhaps an initial curiosity-motivated experimentation.
In a nutshell, this commit revamps the map/rank/bind procedure to take into account topology info on the compute nodes. I have, for the most part, preserved the default behaviors, with three notable exceptions:
1. I have at long last bowed my head in submission to the system admin's of managed clusters. For years, they have complained about our default of allowing users to oversubscribe nodes - i.e., to run more processes on a node than allocated slots. Accordingly, I have modified the default behavior: if you are running off of hostfile/dash-host allocated nodes, then the default is to allow oversubscription. If you are running off of RM-allocated nodes, then the default is to NOT allow oversubscription. Flags to override these behaviors are provided, so this only affects the default behavior.
2. both cpus/rank and stride have been removed. The latter was demanded by those who didn't understand the purpose behind it - and I agreed as the users who requested it are no longer using it. The former was removed temporarily pending implementation.
3. vm launch is now the sole method for starting OMPI. It was just too darned hard to maintain multiple launch procedures - maybe someday, provided someone can demonstrate a reason to do so.
As Jeff stated, it is impossible to fully test a change of this size. I have tested it on Linux and Mac, covering all the default and simple options, singletons, and comm_spawn. That said, I'm sure others will find problems, so I'll be watching MTT results until this stabilizes.
This commit was SVN r25476.
ason to return the topology from every daemon. Borrow a page from the --hetero-apps page and let users indicate that the node topology differs by adding a --
hetero-nodes option to mpirun. If the option is set, then every daemon returns topology info. If not set, then only daemon vpid=1 returns it.
We always want one daemon to return the topology as the head node is often different from the compute nodes. Having one daemon return the compute node topolo
gy allows us to detect any such difference. All compute nodes are then set to the same topology.
This commit was SVN r25408.