1
1
Граф коммитов

6 Коммитов

Автор SHA1 Сообщение Дата
Nathan Hjelm
13643f5b6e btl/vader: improved single-copy support
This commit makes the folowing changes:

 - Add support for the knem single-copy mechanism. Initially vader will only
   support the synchronous copy mode. Asynchronous copy support may be added
   int the future.

 - Improve Linux cross memory attach (CMA) when using restrictive ptrace
   settings. This will allow Open MPI to use CMA without modifying the system
   settings to support ptrace attach (see /etc/sysctl.d/10-ptrace.conf).

 - Allow runtime selection of the single copy mechanism. The default behavior
   is to use the best available. The priority list of single-copy mehanisms is
   as follows: xpmem, cma, and knem.

 - Allow disabling support for kernel-assisted single copy.

 - Some tuning and bug fixes.
2014-10-20 11:44:52 -06:00
Nathan Hjelm
12bfd13150 btl/vader: improve performance for both single and multiple threads
This is a large update that does the following:

 - Only allocate fast boxes for a peer if a send count threshold
   has been reached (default: 16). This will greatly reduce the memory
   usage with large numbers of local peers.

 - Improve performance by limiting the number of fast boxes that can
   be allocated per peer (default: 32). This will reduce the amount
   of time spent polling for fast box messages.

 - Provide new MCA variables to configure the size, maximum count,
   and send count thresholds for fast boxes allocations.

 - Updated buffer design to increase the range of message sizes that
   can be sent with a fast box.

 - Add thread protection around fast box allocation (locks). When
   spin locks are available this should be updated to use spin locks.

 - Various fixes and cleanup.

This commit was SVN r32774.
2014-09-23 18:11:22 +00:00
Ralph Castain
aec5cd08bd Per the PMIx RFC:
WHAT:    Merge the PMIx branch into the devel repo, creating a new
               OPAL “lmix” framework to abstract PMI support for all RTEs.
               Replace the ORTE daemon-level collectives with a new PMIx
               server and update the ORTE grpcomm framework to support
               server-to-server collectives

WHY:      We’ve had problems dealing with variations in PMI implementations,
               and need to extend the existing PMI definitions to meet exascale
               requirements.

WHEN:   Mon, Aug 25

WHERE:  https://github.com/rhc54/ompi-svn-mirror.git

Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding.

All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level.

Accordingly, we have:

* created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations.

* Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported.

* Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint

* removed the prior OMPI/OPAL modex code

* added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform.

* retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand

This commit was SVN r32570.
2014-08-21 18:56:47 +00:00
George Bosilca
68c4ecbe06 Even less ompi usages down here.
This commit was SVN r32328.
2014-07-26 22:21:08 +00:00
George Bosilca
f217661ee0 Use opal_process_info whenever possible. Some other minor cleanups.
This commit was SVN r32325.
2014-07-26 21:48:23 +00:00
Ralph Castain
552c9ca5a0 George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-)
WHAT:    Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL

All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies.  This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP.  Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose.  UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs.  A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic.

This commit was SVN r32317.
2014-07-26 00:47:28 +00:00