In order to have an effect, ibv_fork_init should be called in the
beginning of the verbs initialization flow - before the calls to the
ibv_create_qp and ibv_create_cq verbs.
These functions are called from the oob/ud code and by the time the
other verbs components (btl openib, pml yalla, ...) call ibv_fork_init,
it's too late. This commit forces the call to ibv_fork_init (if it's
requested) right at the beginning of all the components that are using
verbs.
(ibv_fork_init() can be safely called multiple times)
This commit also removes the btl_openib_want_fork_support mca parameter
and adds a new mca parameter instead - opal_verbs_want_fork_support.
Through this new parameter, fork support may be requested for ALL
components.
The default value for this parameter is set to 1.
Before this commit the btl_openib_want_fork_support parameter didn't
provide fork support for the openib btl if its value was set to 1.
(because when openib called ibv_fork_init, it was already after the
calls to ibv_create_* in oob/ud and thereofre it failed).
Use of the old ompi_free_list_t and ompi_free_list_item_t is
deprecated. These classes will be removed in a future commit.
This commit updates the entire code base to use opal_free_list_t and
opal_free_list_item_t.
Notes:
OMPI_FREE_LIST_*_MT -> opal_free_list_* (uses opal_using_threads ())
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
Some BTLs do not require local registration for some rdma
transactions. For example: inline put on openib, fma put on ugni. This
commit adds code to expose the local registration thresholds to BTL
users. Optimized code can take advantage of this information to
improve rdma performance.
- by default allow to register maximum possible (i.e 2 * total_memory)
memory. This beheviour can be turned off using mca parameter
"btl_openib_allow_max_memory_registration"
- In fallback case, use device specific parameters to calulate
memory limit.
structure
This structure member was originally used to specify the remote segment
for an RDMA operation. Since the new btl interface no longer uses
desriptors for RDMA this member no longer has a purpose. In addition
to removing these members the local segment information has been
renamed to des_segments/des_segment_count.
We recognize that this means other users of OPAL will need to "wrap" the opal_process_name_t if they desire to abstract it in some fashion. This is regrettable, and we are looking at possible alternatives that might mitigate that requirement. Meantime, however, we have to put the needs of the OMPI community first, and are taking this step to restore hetero and SPARC support.
Properly setup the opal_process_info structure early in the initialization procedure. Define the local hostname right at the beginning of opal_init so all parts of opal can use it. Overlay that during orte_init as the user may choose to remove fqdn and strip prefixes during that time. Setup the job_session_dir and other such info immediately when it becomes available during orte_init.
- do not have mca_btl_openib_component.default_recv_qps point to the stack
- do not reset mca_btl_openib_component.default_recv_qps in btl_openib_component_open
cmr=v1.8.3:reviewer=miked
This commit was SVN r32642.
WHAT: Merge the PMIx branch into the devel repo, creating a new
OPAL “lmix” framework to abstract PMI support for all RTEs.
Replace the ORTE daemon-level collectives with a new PMIx
server and update the ORTE grpcomm framework to support
server-to-server collectives
WHY: We’ve had problems dealing with variations in PMI implementations,
and need to extend the existing PMI definitions to meet exascale
requirements.
WHEN: Mon, Aug 25
WHERE: https://github.com/rhc54/ompi-svn-mirror.git
Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding.
All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level.
Accordingly, we have:
* created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations.
* Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported.
* Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint
* removed the prior OMPI/OPAL modex code
* added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform.
* retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand
This commit was SVN r32570.
The contrib/check-help-strings.pl gets confused if the topic is an
inline logic check, so separate it into two calls to show_help.
This commit was SVN r32455.
WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL
All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic.
This commit was SVN r32317.