NOTE: launch performance will be absolutely awful if you do this with BTLs that aren't configured to modex_recv on first message!
Even with "modex on demand", we still have to do a barrier in place of the modex - we simply don't move any data around, which does reduce the time impact. The barrier is required to ensure that the other proc has in fact registered all its BTL info and therefore is prepared to hand over a complete data package. Otherwise, you may not get the info you need. In addition, the shared memory BTL can fail to properly rendezvous as it expects the barrier to be in place.
This behavior will *only* take effect under the following conditions:
1. launched via mpirun
2. #procs is greater than ompi_hostname_cutoff, which defaults to UINT32_MAX
3. mca param rte_orte_direct_modex is set to 1. At the moment, we are having problems getting this param to register properly, so only the first two conditions are in effect. Still, the bottom line is you have to *want* this behavior to get it.
The planned next evolution of this will be to make the direct modex be non-blocking - this will require two fixes:
1. if the remote proc doesn't have the required info, then let it delay its response until it does. This means we need a way for the MPI layer to tell the RTE "I am done entering modex data".
2. adjust the SM rendezvous logic to loop until the required file has been created
Creating a placeholder to bring this over to 1.7.5 when ready.
cmr=v1.7.5:reviewer=hjelmn:subject=Enable direct modex at scale
This commit was SVN r30259.
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
As a secondary cleanup, the HNP doesn't need to update its nidmap during an xcast as it already has an up-to-date picture of the situation. So just dump that data and move along.
This commit was SVN r27318.
Update all the orte ess components to remove their associated APIs for retrieving proc data. Update the grpcomm API to reflect transfer of set/get modex info to the db framework.
Note that this doesn't recreate the old GPR. This is strictly a local db storage that may (at some point) obtain any missing data from the local daemon as part of an async methodology. The framework allows us to experiment with such methods without perturbing the default one.
This commit was SVN r26678.
Restore enable-static-ports option by default - the Cray will have to disable it to get around their library issues, but that's just a warning problem as opposed to blocking the build.
This commit was SVN r26606.
Roll in the ORTE state machine. Remove last traces of opal_sos. Remove UTK epoch code.
Please see the various emails about the state machine change for details. I'll send something out later with more info on the new arch.
This commit was SVN r26242.
1. minor modification to include two new opal MCA params:
(a) opal_profile: outputs what components were selected by each framework
currently enabled for most, but not all, frameworks
(b) opal_profile_file: name of file that contains profile info required
for modex
2. introduction of two new tools:
(a) ompi-probe: MPI process that simply calls MPI_Init/Finalize with
opal_profile set. Also reports back the rml IP address for all
interfaces on the node
(b) ompi-profiler: uses ompi-probe to create the profile_file, also
reports out a summary of what framework components are actually
being used to help with configuration options
3. modification of the grpcomm basic component to utilize the
profile file in place of the modex where possible
4. modification of orterun so it properly sees opal mca params and
handles opal_profile correctly to ensure we don't get its profile
5. similar mod to orted as for orterun
6. addition of new test that calls orte_init followed by calls to
grpcomm.barrier
This is all completely benign unless actively selected. At the moment, it only supports modex-less launch for openib-based systems. Minor mod to the TCP btl would be required to enable it as well, if people are interested. Similarly, anyone interested in enabling other BTL's for modex-less operation should let me know and I'll give you the magic details.
This seems to significantly improve scalability provided the file can be locally located on the nodes. I'm looking at an alternative means of disseminating the info (perhaps in launch message) as an option for removing that constraint.
This commit was SVN r20098.